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A theory of impurity states in semiconductors with a InSb band structure is developed in a 
multiband approximation that takes into account the interaction between the conduction and 
valence bands in a straightforward manner. A general investigation of the solution of the 
equations of motion indicates that the behavior of the carrier near the acceptor center can be 
correctly described only if the upper bands are taken into account; in the vicinity of the donor 
it is virtually independent of them. The energy levels of large-radius local centers in InSb 
are calculated numerically. The obtained value of the ionization potential for a singly charged 
acceptor center in InSb is in agreement with the experimental value. 

THE theory of large-radius local states in semi­
conductors is usually based on the effective-mass 
method, the motion of the carrier being governed 
by the structure of one or several bands adjacent 
to the edge. The local center is a donor or an ac­
ceptor, depending on the type of the chosen band. 
We can regard as a natural generalization of this 
approximation a model in which the behavior of the 
charged quasiparticle is described by the form of 
the nearest most vital bands; the latter can be 
separated by a forbidden band. Such a model, in 
particular, is the fruitful scheme proposed by 
Kane, [ 1J which considers simultaneously both the 
conduction band and the spin-split valence bands. 
In this scheme, the possibility that the quasiparti­
cle will stay in an electron or hole band is already 
implicit in the equations of motion themselves, so 
that it becomes necessary to speak here of a single 
quasiparticle that is predominantly in one of the 
charged states. This pertains also to the behavior 
of the carrier near a charged center; such a multi­
band theory of local states was first proposed by 
Keldysh. [ 2 J 

In this paper we consider, within the framework 
of Kane's scheme, shallow local states in cubic 
crystals. A detailed account of the band structure 
has enabled us to calculate, in accord with experi­
ment, the ionization energy of the acceptors in InSb, 
and also to determine the wave function of the cor­
responding state. The changes occurring in the 
analytic structure of the solutions for the local 
center when account is taken of the remote bands 
are analyzed. 

1. HAMILTONIAN OF THE PROBLEM AND 
SEPARATION OF VARIABLES IN THE 
EQUATIONS OF MOTION 

We use the matrix Hamiltonian (2) from [ 3 J, 

and retain in its off-diagonal elements the terms 
proportional to the interaction parameter P. The 
discarded terms constitute small corrections of 
higher order in k of the effective-mass method; 
in a crystal with an inversion center, the symme­
try always annihilates these corrections. The 
operator fi from [ SJ can play at zero magnetic 
field the role of kinetic energy in the total Hamil­
tonian: 

e = H + V(r) = H- Ze2 I eor. (1) 

The operator H describes the interaction of 
only the conduction band and the spin -split valence 
band, so that it contains the infinite mass of the 
heavy holes. In Kane's scheme, this defect is elim­
inated by taking into account the influence of the 
upper bands. In the lowest order in k, this influ­
ence can be taken into account by terms quadratic 
in k along the diagonal and in the i, j = 3-6 block 
of the matrix H. In order to retain the spherical 
symmetry of the problem, we discard terms caus­
ing the anisotropy of the band energy. The remain­
ing off-diagonal terms ~k2 can be compensated 
with ~he aid of a unitary transformation of the ma­
trix H, by changing the constant P by an amount 
equal to a fraction of the order of the ratio of the 
masses of the light and heavy holes. This gives 
ri.se in the Hamiltonian to negligibly small terms 
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that are inversely proportional to the square of 
the width of the forbidden band. The matrix ele­
ments of H which differ from those in [ 3 J are 

ii = (/,~~ 1· = 1 2· 
,...1.1 ' "' ' ' 

Hi1 = -Eg + b/.:2 , j = 3, 4, 5, G; (2) 
H.i.i = -1'1- Eg + c/~2, j = 7, 8. 

These elements contain also terms with the vacuum 
mass of the electron. It is easy to verify that all 
three parameters a, b, and c are negative. The 
elements with bk2 are responsible for the finite 
mass of the heavy holes. 

In the chosen approximation, the Hamiltonian 
has spherical symmetry and we can separate the 
variables in the corresponding Schrodinger equa­
tion. To this end we note that the operators of the 
rotation group are in this cas!l matrices (of eighth 
order, which is the order of H), and consequently, 
coincide with one of its representations. This rep­
resentation, according to Schur's lemma, [ 4J is re­
ducible, since its matrices commute with the di­
agonal part of H for arbitrary Eg and 6. Conse­
quently, in the chosen basis, [ 3 J only the square 
cells of second, fourth, and second order, respec­
tively, arranged along the principal diagonal, dif­
fer from zero in these matrices, in accord with (2). 
Therefore the spherical functions, which represent 
in this case columns of eight elements, can be 
written in the form 

Here Ue and Us are two-dimensional vectors while 
uh is a four-dimensional one. The symbol 0 
stands for a two-dimensional zero vector. The in­
dices of the spherical functions relate them with 
each of the three bands directly accounted for in 
the Hamiltonian. The spinors Ue and Us (or uh), 
which transform in accordance with the irreduci­
ble representation Du2 (or respectively D3; 2) of 
the rotation group, can be written in the form of 
columns with a single nonzero element. We now 
can, using the Clebsch Gordan coefficients, [ 5J 

construct the basis functions ue and us (or uh) of 
the irreducible representation Dz- 1; 2 and Dz +1/z 

(or Dz_ 3; 2, ... , Dz + 3; 2) as linear combinations of 
the products of these spinors by the usual one­
dimensional spherical functions Yz u(e, cp) belong­
ing to Dz. Since the transformation' properties of 
the basis functions (3) from [ 3 J differ from those 
customarily assumed in the Clebsch-Gordan the­
ory, we have constructed by this method the func­
tion ue; the o~hers are generated by applying to it 
the operator H. 

The calculations lead to the following angle 
functions belonging to the total angular momentum 
j = l + 1/ 2 and its projections m (m assumes 2j + 1 
half-integer values from - j to j): 

[3 (j --i- m)(j- m + 1)(j- m + 2)]'' Yi+'j,, m-',, ·\ 

. ( . ') ) .r. 1 }' l J+•'lll. yJ-m+ J•',,,m-'/, ) 
11!/~==lV1 

(j- ::lm) Jfj + m + 1 Yj+'/,, m+'f, I' 
i [3 (j -m)(j + m + 1) (j + m + 2)('Yj+' ,,m+',,, 

xl =c [2j (2j + 2) (2j + :3)r'"; 

/ -l(j + m)(j + m -1) (j + m- 2)]'' Yi-'1,, m-',) 
jm , \ i [ ::1 (j-Ill )(j + m- 1} (j + 111} ]'/, Yi-'/,, m·-'/, 

U~to =J\2 , ' 
" [3 (j -r m){j- m)(j- m- 1)]·' Yj-';,, m+',, 

- i [(j -m)(j- m -1) (j- m- 2)]'1'Yj-',,nn', 

N2 = [2j (2j- 1)(2f- 2W'''; 

[. j - /11 + 1 J' •;, . 
- 2 (j-=t=i} } i+'/, m-',, 

[- i + m + 1 J- '/, 

- 2 (j + 1} Yj+' '• m+'., )· (4) 

We can similarly construct spherical functions 
with total momentum j = l - 1/ 2, completing the 
system of functions written out above. It is essen­
tial that these two subsystems have different parity 
for equal values of j, and therefore the angular 
dependence of the eigenfunct~on 1/J of the spherically 
symmetrical even operator H is described by 
functions from only one of the subsystems. For 
example, for j = l + 1/ 2 we have 

tpim(r, e, cp) = lfeimgt(r) + uhlimgz(r) 

+ Uh2img3 (r) + U.Jmg,(r). 

The radial functions satisfy the system of equa­
tions 

VL+2(d L\ ( x J ·~-- · ·---, gl- fii'1L+t +-+ Et g2 = 0, 
2L + 1 dr r ' r . 

1/ 3L ( d L + 1 ) ( x ) Y ?[·--+-1 -d + -- gt- fit'1L-f +- + E! g3 = 0, 
-"' . r r . r 

Here L is equal to l or -l - 1 respectively for 

(5} 

(6) 
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j = l +% and j = l- 1f:!; the parameters Ql, {3, y, 
K, E, E 1, and E 2 , multiplied by P 13 , are equal to 
a, b, c, Ze2/E0, E..!. E + Eg, and E + D. + Eg; E is 
the eigenvalue of H, and P can be regarded as 
positive without loss of generality; 

t!L = ~ + ~_!_!_- L(L + 1). 
dr2 T dr Tz 

In accordance with symmetry requirements, the 
energy levels are (2j + 1)-fold degenerate in the 
magnetic quantum number m. 

2. BEHAVIOR OF THE RADIAL FUNCTIONS 
A 

The terms quadratic in k, which enter in the 
system (6), are relatively small: the parameter b 
is directly connected with the mass of the heavy 
holes, b = - fi2 /2mh; a and c are of the same or­
der. The role of these terms can be explained 
most clearly by going over to the single-band ap­
proximation. In this case the elimination of the 
interband matrix elements ~ Pk generates large 
terms ~ P 2 k2 /Eg, due to the small mass of the 
electron and of the light holes. In the electronic 
and the spin-split bands, these terms enter in the 
diagonal matrix elements and consequently mask 
ak2 and ck2. Thus, the value of the latter is quali­
tatively inessential (also quantitatively if the 
masses of the light and heavy holes differ greatly). 
The situation is different in the band of the light 
and heavy holes, in which the terms .... p 2kik_j enter 
only off the diagonal, and cannot cancel out the 
term bi?. We must therefore expect here an ap­
preciable dependence of the spectrum on the heavy­
hole mass. 

A 

The foregoing properties of the Hamiltonian H 
are implicit also in the system (6), although, to be 
sure, in a somewhat unexpected form. 

We begin the investigation of this system with 
the liJ11iting case when Ql = {3 = y = 0. In this situa­
tion it is possible to exclude from (6) the functions 
g2, g3, and g4 and to reduce the equation for g1 to 
the standard form: 

where 

3 1 1 1 
p(T)=-+--------., 

T T - To r - Tt T - Tz 

q(r) = 8~t82 +A+_!!_+ _1_ etL 
81 --r-- 2ez T T - To r - Tt 2x 

1 e2L L(L+1)-x2/3 

B = _ ~~ (et + 2ez- 3e) (et- ez) 2 + e1 + 2e2 L. 
9 (et + 2e2) 2 6x 

The singular points rj are 

3x 
ro=---·-­

Et + 2e2' 

(8) 

In addition to these points, Eq. (7) has singular 
points r equal to zero and infinity. In the vicinity 
of zero, g1(r) behaves like r-1+v, where 

v = + [l{l + 1) + 1- x2 I 3]'h, (9) 

and at infinity it behaves like exp ( ->..r), with 

A = ± [ -EE1E2 I (e. I + 2ez)] '''· (10) 

We see from (10) that a discrete spectrum can ap­
pear in the forbidden band 

-Eg<E<O, (11) 

and also near the top of the spin-split band 

-Eg-!! < E < -Eg- 2l3!!. (12) 

In a small x-vicinity of the points rj, the coef­
ficients of (7) reduce to (x = r - rj) 

p(x) = fP I x +Po+ Pt(x) + ... , 
q (x) = Q I x + qo-1- q1 (x) +. . . (13) 

For arbitrary values of D. and Eg at the points 
r 1 and r 2, where !!P = -1, the characteristic equa­
tion for the exponent TJ of the solution g1 (x) ~ x TJ 

has roots 0 and 2. If the particular solution for g1 

corresponding to a larger root is 

w = x 2 ( 1 + ~ anxn) , (14) 
n=l 

then, in accordance with the theory of differential 
equations (see, for example, [ 61 ), the general solu­
tion of (7) is 

X 1 X 

gt(x)=Ctw+C2w ~ w2 exp{- ~p(x)dx}dx. (15) 

By directly substituting w in (7) with coeffi­
cients (13) we can determine several of the first 
coefficients an, and then expand the integral of 
(15) in powers of x. Then 

g1 (x) = C1w + Cz( --1/2- 1I2Qx + ;w In.r. + ... ), 
6= 114(qo+0(Po+Q)]. (16) 

We have left out from (16) the positive powers of 
x, starting with x2• 

Expanding p(r) and q(r) in terms of x in the 
vicinity of the singular points, we can readily de­
termine Po and q0 • The coefficient ~ for the point 
r 1 turns out to be 

3et2 
6 =- 16x 2 L(L+2). (17) 
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According to (6) in the vicinity of rio where 
Q = -L/2rio 

g2 ~ ~v_£±_2_ (-<!__- __£) gi 
x 2L + 1 dx rt, 

~ __£ v L + 2 ~ iL(L + 2) ' 
x 2L + 1 r- r1 

~ L+2_v __ L_ ~ iL(L+2). 
x 2L+ 1 r- r1 

For the point r 2 we have Q = L/r2, 

(18) 

g4 """ ~ ( _!!_- !:__) g1 """ const, (19) 
x dx r21 

and ~ = 0; therefore all the gi (r) in the vicinity of 
this point are analytic. 

In the singular point r 0, where .Gfo = 1 and the 
characteristic equation has multiple roots 1J = 0, 
the general solution g1 begins with the logarithmic 
term[ 6 J 

(20) 

and a pole appears also in the remaining functions 
of the system. 

If K > 0 and the spectrum lies within the for­
bidden band, corresponding to a center attracting 
the electrons, then the points r 0 and r 1 are nega­
tive and consequently fall in the unphysical region 
of values of the variable r. A similar situation 
arises when K < 0 if the spectrum lies near the 
top of the spin-split band (12). On the other hand, 
if the spectrum of the acceptor center lies inside 
the forbidden band, then the singular points r 0, 

r 1 > 0 are in the real region of r and it is neces­
sary to examine in this case whether gi are finite. 
Thus, we must impose on the solution of the 
second-order differential equation (7) the follow­
ing four conditions: boundedness at infinity (A. > 0), 
absence of singularities at r = 0 (v > 0) and r = r 0, 

and a definite behavior at the point r = r 1; this is 
generally speaking impossible. 

In this case it is naturally necesAsary to resort 
to the terms that are quadratic in k. The most 
vital terms ~ f3.6.L±i are those directly connected 
with the mass of the heavy holes. Indeed, in the 
second and third equations of (6) the factor 
(r- r 1)-1 of g2 and g3, which is characteristic of 
the singular point rio is "relegated to the back­
ground" together with them in the second and third 
equations of (6). This is the very factor which is 
responsible for the non-analyticity of the radial 
functions in r 1. It can be verified that now the gi 

can be expanded in a Taylor series in the vicinity 
of any r and consequently, the non-analyticity in 
r 0 will also vanish. At r = 0 we have gi(r) ~ r~'i, 
where Vi = max{Li>- Li, -1}, and Li is the index 
of the Laplace operator in the i-th equation of the 
system (6). The condition (10), which governs the 
behavior of the functions at infinity, is written as 
follows (if a and y likewise do not vanish) 

2~} ').} 
e+aA.2 + + =0. 

Et + I\A2 E2 + yA.2 
(21) 

To conclude this section, let us list several 
models of the band structure, when a change in the 
system of singular points of (7) makes it possible 
to obtain its exact solution. In all the limiting 
cases considered below, (6) reduces to two equa­
tions analogous to the corresponding system for 
the radial functions of the relativistic hydrogen 
atom. The spectrum can be obtained from the well 
known formula (see, for example, [ 7J): 

E - E {( 1 + -- x2 rf, -1 } 
2 ( n - l - 1 + [ ( l + 1 )2 - x2]'/,) 2 

(22) 

The meanings of E and i{ are explained below. 
1. We consider a hypothetical case when the 

valence band split by the spin-orbit interaction is 
located above the bands of the light and heavy 
holes. We assume that the gap between the valence 
bands is infinitely large, i.e., E1 - oo, but E2 is 
finite. In this case the singular points r 0 and r1 
go over into the point r = 0, where the course of 
the solution is altered, and (6) reduces to two equa­
tions for the functions g1 and g4• With this, we 
must put in (22) E = Eg + .6., K = K, and l = j - %. 
This variant was considered in [ 2J. 

2. If the spin-orbit splitting of the valence 
bands is annihilated (i.e., .6. = 0 and E1 = E2), then 
all three singular points rj coalesce into one. Go­
ing to the limit in p(r) and q(r) from (8), we ob­
tain 

3 1 
p(r) = --

r r- r1 

EEt x(e + Et) L(L + 1)- x2/3 
q(r) = -3- + 3r - r2 . (23) 

At the point r 1 we have Q = 0 and ~ 
= -EIL(L + 1)/4K2• As seen directly from (6), when 
L = l = 0 we get g3 = 0, and g2 and g3 differ by a 
numerical factor. Under the same conditions, the 
term with the logarithm in g1 and the pole in the 
remaining functions vanish. Thus, when .6. = 0 and 
L = l = 0 we have E = Eg and i{ = K/13. 

3. For .6.- oo and l = 0 or l = 1 (in both cases, 
for j = %>. an exact solution of (6) can also be ob­
tained, E = Eg and i{ = K j/2. 
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3. VARIATIONAL PRINCIPLE FOR THE 
AVERAGE ENERGY 

We now discuss a variational method for an ap­
proximate solution of the system (6). We stipulate 
beforehand that the high-lying levels of the system 
are vital in this case. For example, branches of 
the acceptor spectrum should be expected under 
the spectrum of the donor center. It is therefore 
necessary to seek here not the minimum of the 
average energy, but its stationary values. 

The variational functional can be obtained on 
the basis of the system (6). After simple trans­
formations 

(24) 

where 

·y 3L ( d L + 1 ) ( d L ') . +2 --ga --+-- gt+2g4 --- gt 
2L + 1 dr r dr. r , 

4 

- _::: ~ g;2 - Eg (gz2 + ga2)- ( Eg + E~) g42 }r2 dr, 
ri=l 

H2 = - ~ {ag,l\Lgt + ~ (gzl\L+lg2 + ga.1L-1ga) 
0 

under the normalization conditions 

Here 

' 00 

~ ~ g;2 r2 dr = 1. 
i=l 0 

"f3 
E~=p£1. 

(25) 

(26) 

The variational functional assumes a relatively 
simple form if we expand the radial functions in 
Laguerre polynomials[ 8 1 

00 
( f(n + 1) \'/• gi(r)=(2/,)(2v+IJ2rv-1e-Ar~ani ) Ln2v(2A.r), 

n=O f(n+2v-t-1} 

1 an 
Ln2v(x)=-exx-2v_(xn+2ve-x). (27) 

n! dx" 

These polynomials are orthogonal with weight 
x2 ~' e-x. It is easy to find the relation 

00 

~ x2v-q e-x L,.Zv+t (x)Lm2v+•(x)dx 
0 

r ( m + 2v + s + 1) ~ ( -1) 1!. 

f(n + 1) 
h 

r ( n + t + q - k) r (2v - q + k + 1) 
X f ( m - k + .1) f ( k + 1) f ( k + 2v + s + 1) f ( t + q - k) 

0 ~ k ~ t + q - 1, n > m - t- q, 

if we represent in the integral L~+t(x) in the 
form (27) and, using the formula 

(28) 

(29) 

simplify it by integration by parts. Equations (28) 
and (29) allow us to calculate all the integrals in 
(25) and (26). With this, 

"" "" 
~ r2g;2 dr = ~ (an i)2, (30) 

j rg;gjdr = 'VA.~ ( hnm- 21 6nm) (aniami + amia,.i)' 
o n~m 

"" 1 
i r2g;!1 1g;dr=8A.2 ~ (hnm--;-iln,\{-_!!!:__1 .1 2 / 2v + 
0 n~ 

(v + l) (v -l- 1) ( n + 1 m ) +--· ---·--
2v 2\1 - 1 2v + 1 ' 

1 ) } . . - -(2- 6nm an•am•, 
4 

where 

_ [r(n-t-1)f(m-t-2v-t-1) ]''• 
hnm-

f(m + 1)f(n + 2v + 1) 
(32) 

In accordance with the deductions of the pre­
ceding section, vis determined here by the posi­
tive root of (9), or else is equal to l when account 
is taken of the finite mass of the heavy holes. 

Variation of H with respect to 4N coefficients 
a~(O::::: n ::::: N - 1) subject to condition (26) enables 
us to reduce the problem of finding the energy 
levels to a determination of the eigenvalues of a 
matrix of order 4N. 

The numerical calculations were made with an 
electronic computer. The eigenvalues and the ei­
genvectors (i.e., the 4N numbers a1> of the matrix 
were determined for fixed l by the method of rota­
tions[ 91 1> with subsequent variation with respect 
to this parameter. 

In InSb, where the width of the forbidden band 
is small, the scheme of the interacting nearest 

l)The authors are grateful to V. S. Kvakush of the Institute 
of Cybernetics of the Ukrainian Academy of Science for sup­
plying the corresponding program for diagonalizing the matrix. 
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J 

FIG. 1. Dependence of the ionization po­
tential of the acceptor center on the variational 
parameter,\. The number of the curve coincides 

2 with N; the energy is plotted in units of 
m 0e4/2ft2 E~, and,\ corresponds to the radius in 
units of a0 = 2P E~ft2 / y"!m0e 4 • 

0.05~~+-~~--~--~--~--~--~~~~~7-~~--* o D.4 U.B 1.2 1.6 2P 2!1- 2.8 3.'1. J.6 4,0 4,4 .A. 

bands should describe the real motion of the car­
riers with sufficient accuracy. In addition, the 
small anisotropy of the effective mass mh of the 
heavy holes[ 10• UJ allows us to expect quantitative 
agreement between our present results and exper­
iment for centers with sufficiently large radius. 

This circumstance has induced us to use the 
following parameters of InSb: P = 0. 67 at. un., 
Eg = 4.23 eV, ~= 0.9 ev,[1J Eo= 17,[12J and 
mh = 0.4m0• [ 10 • HJ The parameter {3 is assumed 
here equal to -n 2/2mh. When the masses of the 
light and heavy holes differ greatly (as is the case 
in InSb), the spectrum depends little on the values 
of a and 'Y. Since 'Y - {3 when the spin-orbit in­
teraction vanishes, we can assume that they are 
equal. The constant P is determined from the ef­
fective mass of the electron, [ 1J and a = 0. 

As shown by the calculations, when K > 0 (donor 
center attracting the electrons and repelling the 
holes) a discrete spectrum appears, located in the 
forbidden band at the bottom of the conduction 
band. As expected, the levels of the discrete spec­
trum are close to the hydrogenlike spectrum with 
mass equal to the effective mass of the electrons. 
In the case when K < 0, which corresponds to an 
acceptor center, the discrete spectrum lies di­
rectly over the top of the valence band. In addition, 
discrete levels arise near the top of the spin-
split band. 

The ground state of the acceptor center corre­
sponds to j = % and L = 1, because it is precisely 
in this case that the main component of the wave 
function (Uh2~) may not have any nodes. [ 13 J The 
numerical value of the energy E of the ground 
state of a singly-charged center, reckoned from 
the top of the valence band, is 0.0088 eV, which is 

in good agreement with the experimental value of 
the ionization potential. [ i4J It is possible to set in 
correspondence with the obtained level an "aver­
age effective mass" of 0.19mo. Figure 1 shows 
the dependence of E on the variational parameter 
A for different value of N. As expected, with in­
creasing number of the variational parameters, 
E becomes less sensitive to changes of A. 

Figure 2 shows the distribution of the charge 
density 

(33) 

and the radial functions of the ground state. We 
see that the probable radius is approximately 80 A. 

As expected, the most important functions are 
g2 and g3• The smallness of the function g1 leads 

0.7 

0,6 

0~-+--~==F=~~~==~~ 

-o.t 

FIG. 2. Radial functions and charge density of the ground 
state; r is in units of a0 • 
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FIG. 3. Dependence of the energy of the ground state of 
the acceptor center on P; P 0 = 0.67 at. un., energy scale same 
as in Fig. 1. Curve 1 corresponds to the parameters of lnSb, 
and curve 2 to the case 6. = 0. 

to the following curious circumstance: when P is 
large the energy ceases to depend on this param­
eter. In fact, in this case we can neglect the terms 
proportional to g1 in the first equation of (6), after 
which P drops out from the solutions of the sys­
tem. This is confirmed by concrete calculation 
(curve 1 on Fig. 3). The same figure shows an 
analogous dependence of E on P in the case when 
there is no spin-orbit splitting of the valence 
bands (~ = 0, b =c), considered in analytic form 
in [ 21 • Here, too, at the essential values of P the 
energy does not change with the increase of this 
parameter, thus confirming the method used in [ 21 

for simplifying the variational functional. In this 
case the solution of the system (6) is equivalent to 
extremization of the functional, which differs from 
(A. 8) of [ 21 by the sign at the term -./l( l + 1) cp 11· 
For the same two-parameter trial function as 
used in [ 2 1 , the energy of the ground state ( l = 1) 
is equal to 

- mhZ2e4 
E =max H = 0.58 21i2802 - Eg, (34) 

which is in good agreement with curve 2 of Fig. 3. 
The "average effective mass" 0.58 mh lies be­

tween the masses of the light and heavy holes, un­
like in [ 21 , where its value was 1.4mh. 

It is interesting to trace the course of the ioni­
zation potential with increasing mass of the heavy 
holes. Calculation shows that in this case E in­
creases without limit and crosses the forbidden 

band. This result finds a simple physical explana­
tion. Indeed, if one can speak to any extent of a 
separate motion of the holes in each of the valence 
bonds, then the band of the heavy holes should 
make the overwhelming contribution to the energy, 
the contribution increasing with increasing carrier 
mass. 

The authors are deeply grateful to E. I. Rashba 
for continuous interest in the work, a discussion, 
and a number of fruitful remarks. 
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