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A method is developed for determining the state density in the magnon spectrum of a ferro­
magnetic crystal on basis of data pertaining to inelastic scattering of neutrons. It is shown 
that the scattered neutron energy distribution should be measured not for a perfect ferromag­
netic crystal but for a crystal containing a small concentration of nonmagnetic substitution 
atoms. It is found that in this case the cross section defined by the incoherent single-magnon 
scattering impurities can be expressed in terms of the density state in the magnon spectrum 
of a perfect crystal. 

IT is well known that a study of inelastic nuclear 
scattering of neutrons in crystals makes it possible 
to determine the phonon dispersion law and the fre­
quency distribution function (the density of states). 
The possibility of obtaining such information con­
cerning the crystal is based on the properties of 
the cross section for single-phonon scattering: its 
coherent part contains peaks in the energy distri­
bution of the scattered neutrons, the positions of 
which determine the energy of the phonon partici­
pating in the scattering, while the incoherent part 
is proportional to the density of the states in the 
phonon spectrum. Incoherent nuclear scattering in 
the crystal is due either to the presence of spin in 
the nuclei, or to the isotopic composition of the ele­
ments, therefore even a crystal which is ideal 
from the crystal-chemical point of view leads to 
incoherent scattering of neutrons' thus affording a 
possibility of determining the density of states in 
the phonon spectrum. 

In analogy with phonon scattering, coherent 
single-magnon scattering of neutrons in ferromag­
nets makes it possible to determine the magnon 
dispersion law, but an ideal ferromagnetic crystal 
does not produce incoherent magnetic scattering 
that can be related to the density of states in the 
magnon spectrum. To obtain such a possibility, the 
magnetic crystal must be made irregular, for ex­
ample by introducing in it a certain concentration 
of nonmagnetic impurity substitutional atoms. 
Then, however, the structure of the excitation 
spin-wave spectrum may change, but in the case of 
low impurity concentrations the problem may be 
solved relatively easily. 

The introduction of non-magnetic atoms is con­
venient because it does not introduce the impurity­
host exchange parameter J', which is difficult to 
determine, so that the cross section of the inco­
herent single-magnon scattering can be most 
easily connected with the density of states for an 
ideal ferromagnetic crystal. 

The doubly-differential cross section of the 
magnetic scattering of neutrons in a crystal can be 
expressed in terms of space-time correlations of 
the spin projections of the atoms by means of the 
well known formula[!) 

cfl.cr p' 
dQ dE' = (rolj)2-~ Fn(q)F,(q)e-iq(n-mJ~ (6a.~- ea.e~) 

p nm a.~ 

( 1) 

where E, p and E', p' are the energy and momen­
tum of the incident and scattered neutrons, q = p 
- p' is the scattering vector, b.E = IE - E' I is the 
transition energy, e is the unit scattering vector, 
S~ is the a projection of the spin vector of the 
atom at sight n, F(q) is the magnetic form factor 
of the atom, r 0 is the classical electromagnetic 
radius of the electron, and 1J = -1.913 is the mag­
netic moment of the neutron. 

The part of the cross section ( 1) which is res­
ponsible for the single-magnon scattering can be 
readily obtained for a ferromagnetic crystal by 
expanding the spin operators in powers of the Bose 
operators an and a~ of creation and annihilation of 
spin deviations by means of the relations [2 J : 
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(the spontaneous magnetic moment of the crystal 
is directed along the z axis) . 

If we introduce the advanced Green's function[ 3J 

Cnm(t- t') =· i8(t'- t)<[an(t), llm+(t') ]>, (3) 

then we can readily show that the cross section of 
the single-magnon scattering is expressed in terms 
of its Fourier component Gnm(E) with respect to 
the variable t - t' by means of the relation 

__!!:!__- 1 2_f_ 2 { n(till) } "'-' 1i' ( ) 
dQ dE'- 2 (roTJ) p [1 +(em) ] n(lill) + 1 ~- n q 

XFm(q) (SnSm) 1/' exp( -iq)i(n-m) )!_ Im C,m( I:J.E). 
n 

(4) 

The upper relation is taken here for scattering 
with absorption of a magnon, and the lower for 
emission; n(D. E) is the Bose distribution function, 
and m is a unit vector in the direction of the spon­
taneous moment. 

For an ideal crystal consisting of one species 
of atoms, this term determines the cross section of 
the wholly coherent scattering of the neutrons. In 
the presence of randomly distributed atoms of the 
difference species, incoherent single-magnon scat­
tering is also produced. For small concentrations 
of the impurity magnetic atoms, the corresponding 
parts of the cross sections were calculated by one 
of the authors in[4J. However, from the results of 
that paper it is impossible to obtain the cross sec­
tion for the case when the impurity atom is non­
magnetic, by simply taking the limit to S' = 0 and 
J' = 0 in the final results, without taking account of 
the fact that in this case the number of states of 
the single-particle excitations in the system de­
creases compared with the case of magnetic impur­
ity atoms. This fact makes it necessary, in addi­
tion, to assume from the very outset the identical 
vanishing of G00 = G0n = Gno = 0 (for all the sites 0 
occupied by the nonmagnetic impurities). 

As seen from ( 4), calculation of the cross sec­
tion in the presence of impurities in the crystal 
calls for calculation of the Green's function Gnm 
and subsequent averaging of expression (4) over 
different impurity configurations. This procedure 
was developed in detail by a diagram technique by 
one of the authors [ 5] who has shown that for small 
impurity concentrations the results can be obtained 
by considering expression (4) for a crystal contain­
ing a single impurity atom, making a rather simple 
subsequent generalization. 

We have thus reduced our problem to the calcu­
lation of the Green's function of a crystal containing 
one non-magnetic impurity atom. Let us locate it 
at the site n = 0. Since G00 = G0n = Gno = 0, only 
(N- 1)(N- 1) matrix elements Gnm will differ 
from zero, but is most convenient to consider the 
Green's function in the space of N sites of the 
crystal, including also the site n = 0. The corre­
sponding matrix will be denoted by G, so that 

G=(~ ~), ( 5) 

where G is a matrix of dimension (N- 1) (N- 1) for 
all the magnetic sites of the excited crystal. 

Using the definition of the Green's function ( 3) , 
we can readily setup an equation of motion for G 
using the scheme previously employed by us in[6). 

We thus find that G satisfies the equation 

G = C0 1 + C0VG, ( 6) 

where l-is a matrix of dimension N · N in the form 

i=(O Oj 
\ 0 1! ' 

and G0 is the Green's function of an ideal crystal 
with elements 

C,mo = ~ ~ exp(ik(Rn- Rm)] 
N k E- Ek- iO+ ' 

(7) 

where Ek is the energy of the spin wave in the ideal 
crystal. We assume throughout that there is one 
magnetic atom per unit cell of the crystal, and 
therefore only one branch of spin waves. V is the 
matrix of the perturbation introduced by the impur­
ity atom. We confine ourselves in this paper to the 
investigation of a cubic crystal, for which 

V=2JS 

-z 1 1 . . . 1 

1 -1 0... 0 
1 0 -1... 0 

1 0 0 ... -1 

z is the number of nearest neighbors. 

(8) 

Solving (6) by using the cubic symmetry of the 
crystal, we can show that Gnm breaks up into a 
sum of contributions corresponding to irreducible 
representations of the point group of the crystal. 
For example, for a simple cubic lattice (z = 6) we 
have 

Cnrll = C,.m0 + L'l.nm(s) + L'l.nm(P) + L'l.nm(d), (9) 

where s, p, and d denote the irreducible represen­
tations of the cubic group oh: r 1• r 15• and r 12 (in 
the nomenclature of[7]). The contribution D-nm(s) 
turns out to be 
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where we put for brevity 

Go(E) = G00°(E) = ~ L}. 1 . . (11) 
N k E- ek- ~o+ 

Expression (10) is valid for all three types of cubic 
lattices. As regards the contributions .6nm(P) and 
.6nm(d), we can use for a simple cubic lattice the 
results obtained in[4J (formulas (2.12) and (2.13), 
in which we must put p = -1). We shall not write 
out the corresponding formulas. 

We now calculate the sum over nand m in (4). 
Since summation over n and m is only over the 
magnetic atoms for which the spin and form factors 
are the same and equal respectively to Sand F(q), 
in the presence of non-magnetic impurity atoms 
the problem reduces to the calculation of the sum 

- ""' e-tq(n-m) - lm G 1 . < 1 > N LJ :rt nm , · ( 12) 
n,m 

where the symbol < ... ) denotes averaging over 
the impurity configurations. 

Let us examine this expression when there is 
only one impurity atom in the crystal. Using (9) 
and (10) we can write an exact expression 

1 . 
N L} e-tq(n-m)Gnm (E) 

n,m=I=O 

-{c ( )+ 1 G 2 ( )W( >} 1 Go(E) 
- oq N°q q +N1-EGo(E)'( 13) 

where 

W(q) = E- 2Go-1 (q) 
1-EG0 (E) 

nm 

(14a) 

The quantity 1/N in ( 13) plays the role of the 
impurity concentration c. Accurate to terms of 
order c2, the expression in the curly brackets in 
( 13) can be written in the form 

Go(q) + cG2 (q)W(q) ~ (G0-I(q)- cW(q))-t = <G(q)), 

( 15) 
It is clear therefore that (G(q)) is the Green's 
function of the spin-wave excitations of the irregu­
lar crystal, averaged over the impurity configura­
tions, while W(q) has the meaning of the self-energy 
part. In[ 5] there is a rigorous proof, with the aid 
of a diagram technique, of an expression for the 
Green's function of type ( 14), averaged over the 

impurity configurations, in the asymptotic limit of 
low concentrations. At the same time, a connection 
was indicated there between the rigorous results 
and the terms in the single-impurity problem. We 
have used this connection here, in order not to re­
peat all the complicated arguments of[ 5J, to which 
we refer the reader for details. 

Calculation of the sums over n and m in ( 14b) 
leads to the following result for the self-energy 
part: 

W(q) = E- 2G;;1 (q) + Zp(q) + Zd(q) 
1 -EGo (E) Dp (E) Dd (E) • 

where 

Zp(q) = -2JS{1- 1/a[cos q(1- 2) 

+cos q(3- 4) +cos q(5- 6) ]}, 

Zd(q) = -2JS{1 + 1/s[cos q(l- 2) 

+cos q(3- 4) + cos q(5- 6)] 

- tis[ cos q(1- 3) +cos q(1- 4) 

+ cos q ( 1 - 5) + cos q ( 1 - 6) 

+ cosq(2-3) + cosq(2-4) 

+ cos q(2- 5) + cos q(2- 6) 

+ cos q(5- 3) + cos q(5- 4) 

+cos q(6- 3) +cos q(6- 4)]}; 

Dp(E) 1 + 2JS[G0(E)- G12°(E}), 

1 + 2JS[Go(E) + G12°(E) - 2Gt3°(E) ]. 

(16) 

( 17) 

(18) 

( 19) 

Here the indices, 1, 2, ... , 6 number the sites 
from the first coordination sphere. The sites con­
nected by inversion are numbered by the pairs 1 
and 2, 3 and 4, and 5 and 6. The three terms in 
W(q) describe the contributions of the s, p, and d 
states. 

Summing now the results of ( 13) , ( 14), and ( 15) , 
we can write for the quantity ( 12), pertaining to 
crystals containing a certain impurity concentra­
tion c, the expression 

1 . 1 1 y - L; e-tq(n-m)_ <Im Gnm(E)) =- q 

N nm :rt :rt (E- Eq)2 + yq2 

go(E) 
+ c [1- E ReGo(E)]2 + [:rtEg0 (E))2' (20) 

go(E) = :n-1 Im G0 (E) (21) 

is the density of states in the ideal crystal, and 
Eq and Yq are the energy and damping of the spin 
wave in an irregular crystal containing impurities; 
in first order in c we have 
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Eq = eq + c Re W(q, eq), '\'q = c Im W(q, eq). (22\ 

At low values of the quasimomentum q, expres­
sions (22) yield, with account of the relations 
(15)-(19). 

(23) 

- 4 1 } 
'\'q = c:rt{ 1 + 3 (1- A)2 eq2go(eq), (24) 

where A is a numerical parameter, equal to in the 
case of a simple cubic lattice 

A = 2JS[Re G12°(0) - Re G0 (0)] ~ 0.21. (25) 

We now return to formula (4) for the cross sec­
tion, in which the sum over nand m is given by 
(20)- It is clear that the first term in (20) leads to 
coherent single-magnon scattering, whereas the 
second leads to incoherent scattering. Thus, for 
incoherent single-magnon scattering we obtain the 
following result: 

d2crincoh 1 p' { n(!'J.E) } 
_d_Q_d_E_' = Nc 2 (rol])2SF2 (q)p{1 + (em)Z) n(!'J.E) + 1 

E m r ( E') 12 1 
xgo(!'J.E) {Li-!'J.Es~~-E' dE'_ +[n!'J.Eg0 (C.E)Fr. 

(26) 

We have used here a relation between the real and 
imaginary parts of the Green's function G0(E): 

E 
m 

ReG (E) = ~ go (E') dE' 
0 ~· E -E' 

(27) 

Expression (26) was obtained here as a result 
of concrete calculations for a simple cubic lattice. 
It can be shown that it remains valid for all three 
types of cubic lattices with a single magnetic atom 
in the primative cell. Relation (26) allows us to 
reconstruct from the experimentally measured 
incoherent magnetic scattering the density of states 
of the magnon spectrum g0(E), obviously, by solving 
the corresponding integral equation, the structure 
of relation (26) as a function of the transition en­
ergy b. E being such that an approximate method of 
solving the integral equation can be easily devel­
oped. 

At low transition energies, when b. E « Em, the 
denominator of expression (26) can be approxima­
ted by unity, and the cross section turns out to be 
proportional to g0(b.E), in analogy with the situation 
that takes place for incoherent phonon scattering. 
We note that although the cross section of the in­
coherent magnetic scattering is proportional to 
the concentration of the impurity, which is as­
sumed to be small, it should be readily separable 

from the cross section for nuclear incoherent scat­
tering because of the factor 1 + ( e · m) 2, which de­
pends on the orientation of the spontaneous moment 
of the crystal, which usually is varied with the 
aid of an external magnetic field. The incoherent 
scattering should be measured in the region of 
small scattering angles, where the cross section 
of the magnetic scattering is maximal, and that of 
the phonon incoherent scattering is small. It would 
be of interest to carry out the corresponding meas­
urements on known cubic ferromagnetic crystals 
such as iron, nickel, and europium oxides. 

It must be borne in mind that these measure­
ments require neutron beams of appreciable inten­
sity, for by virtue of the low concentration of the 
impurities the incoherent magnetic scattering pro­
duced by them will be suppressed by the incoherent 
nuclear scattering of the matrix. To this end it is 
necessary to choose ferromagnetic crystals with the 
smallest nuclear incoherent cross section. Among 
the known ferromagnets, the most convenient object 
is apparently iron. Its cross section for incoherent 
nuclear scattering is 0.3 b, whereas the cross sec­
tion of the magnetic scattering per atom (r07]) 2 

""0.3 b. When referred to a single atom in the 
crystal, this cross section amounts to c(r07]) 2, 

where the concentration c should be taken quite 
small (in order to use formula (26)), not exceeding 
5-7%. The additive could be aluminum, which is 
not magnetic, is well dissolved in iron within the 
limits of the indicated concentrations, and produces 
no nuclear incoherent scattering. 

With respect to formula (26) it is useful to make 
the following remark. In spite of the resonant char­
acter of the denominator, the expression written 
out has no sharp maximum at the "resonance" 
point (when the first term in the denominator van­
ishes), for at this point the second term of the 
denominator is not small. For example, in a simple 
cubic lattice the first term vanishes when b. E is 
equal to 0.6 of the width of the spin-wave band, but 
at this place the density of states is maximal, so 
that the second term in the denominator turns out 
to be equal to approximately 3. The absence of 
sharp maxima in the "resonant" factor of the ftmc­
tion (26) should facilitate the reconstruction of the 
function g 0(E) from data on the incoherent cross 
section. 
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