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The longitudinal relaxation lifetimes for spin magnetization of carriers in a quantizing mag­
netic field are calculated in the Born scattering approximation. The transverse diffusion 
coefficients of spatially inhomogeneous magnetic-moment distributions are also determined. 
All conduction electron spin-lattice relaxation mechanisms of any significance in conducting 
crystals are considered. A simple relation is established between the spin-diffusion coeffi­
cient and dissipative part of the transverse electric conductivity coefficient for strong mag­
netic fields. A concrete calculation is carried out of the spin-lattice relaxation time for car­
riers interacting with magnetic impurities in the quantum limit. 

1. The spin-lattice relaxation of carriers in con­
ducting crystals in weak magnetic fields has been 
investigated quite thoroughly. At the present time, 
however, there is no theory of this phenomenon 
suitable for strong "quantizing" magnetic fields. 
Qualitative estimates of the expected temperature 
and field dependence of the spin-lattice relaxation 
time when scattering by acoustic phonons in the 
quantum limits are given in the review of Yafet[tl. 
Yet it is precisely the region of quantizing magnetic 
fields which is of greatest interest for the study of 
different resonance effects in the conduction-elec­
tron system of a solid. An important role is played 
in these effects by the diffusion of the spin magne­
tization, which calls for an account of spatial 
inhomogeneities in the distribution of the density 
of the magnetic moment of the carrierE2l. In the 
limit of strong magnetic fields in which we are 
interested w 0T » 1 (w 0 = eH/mc is the cyclotron 
frequency and T is the average momentum scatter­
ing time) and weak spatial inhomogeneities ( Larmor 
radius rL much smaller than the characteristic 
dimensions of the inhomogeneities L in the particle 
distribution) , it is possible to neglect the difference 
between the coordinates of the electron and the co­
ordinates of the center of its cyclotron orbit. Then 
the diffusion processes in the conduction-electron 
system reduce to the diffusion of the centers of the 
cyclotron orbits. This approximation turned out to 
be quite fruitful both in the study of transport 
phenomena in solids and in a magnetized plasma [3]. 

In this paperwe study the spin-lattice relaxation 

and the transverse diffusion of the longitudinal 
component of spin magnetization of the conduction 
electrons in a strong magnetic field ( OOH). We ob­
tain general expressions for the spin-lattice re­
laxation time and the coefficient of spin diffusion 
in the Born approximation in the scattering; all the 
main types of spin-lattice interactions that are es­
sential for the carriers in the conducting crystals 
are taken into account. 

2. The kinetic equation for a weakly inhomo­
geneous nonequilibrium system of conduction elec­
trons interacting in a strong magnetic field with 
different branches of the vibrational spectrum of 
the lattice, with static elastically-scattering im­
purities or defects, and also with magnetic impuri­
ties can be written in the form 

X [ 1-Pn'a', nrrexp{ Xax- Yay- fiq, _!__}] 
ap, 

x{lvsph(Pz+fiq,n'cr' x-X y+Y\12 
Pz ncr x y J 

X [(Nq + 1)/n•p,+liq,a•(X- X, Y + Y) [1- /npza(X, Y)J 

-Nq/npza(X, Y) [1- fn'pz+liqza'(x- X, y + Y)]] 

+ I v.i (Pz + Tiqz n'a' X- X y + y ) 12 

Pz na x y 1 
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X Ndln•p +llq a•(X- X, Y + Y)- lnp 0 (X, Y)] 6 z z z 

X (8n•p +llq o•-8np a) z z z 

+I v.d (:: + liq. ::~,a ;-X ~ + y) r 
X [naln•p +llq 0•(X- X, Y + Y) [1- lnp .,(x, y)] 

z z z 

- na•lnp 0 (X, Y) [1- ln'p +llq 0•(X- X, Y + Y)]] z z z 

X 6 (8n•p +llq a'- Bnp o- (a'- a) l\d)}; z z z 

P1,z(1, 2) = (2, 1); Bnp a= Pz2 /2m . z 

+ ltro0 (n + 112) + aA.; a2 = cit I eH; a,a' =• ±1; (1) 

V sph• V si, and V sd are respectively the matrix ele­
ments of the scattering of the electrons by phonons, 
elastically-scattering impurities, and magnetic 
impurities, including processes with change in the 
spin orientation; x andy are the coordinates of the 
center of the electron orbit (it is known that only 
one of the two quantities, x or y, is a good quantum 
number[4J; the dependence of the diagonal density­
matrix element fnpza(x, y) on both coordinates x 
and y simultaneously is tantamount to neglecting 
their non-commutativity, which is important only 
at distances of the order of 0! « L); X and Y are 
the displacements of the center of the -+-.bit in the 
scattering of the electron by the harmonic compon­
ent of the interaction potential, having a wave vec­
tor q: 

Y = y' - y = a2qx; 

Nq is the phonon distribution function (the index of 
the phonon-spectrum branch has been left out), Ni 
is the concentration of the non-magnetic impurities 

l\d 
na = nd e-alid/T /2 ch-

T 

are the populations of the Zeeman sublevels of the 
paramagnetic impurities, having a concentration 
nd; ~s = J.tsH and ~d = J.tdH are the Zeeman ener­
gies and the magnetic moments of the conduction 
electron and of the impurity respectively. 

We assume that the non-equilibrium nature of 
the electron distribution in (1) is due only to per­
turbations of the longitudinal component of the spin 
magnetization 

6M(x, y) = 'X)IS(x, y}, 

11" 8 "" 1' d I x.=li(2:rta)2an;;a}oo Pz np,a, (2) 

the relaxation of which can be interpreted as re­
laxation of the electron Zeeman temperature[ 5J. 
Then, in an approximation linear in the magnetiza­
tion fluctuation (t = chemical potential) 

1 
lnp2 a(x,y)=lnp a+Tinp a(1-lnp a) z • z 

x{ at\.+ II a~ }s(x, y) 
, an 

(3) 

we obtain from (1) the following balance equation 
for the longitudinal magnetic moment 

+co 
~M (x, y) = li (~~a)2 ~a ~ dpz {/np2 a (x, y)- I "Pz" }; 

na _ 00 

a 2:n:p.,2 \ dq , 
Tt 6M (x, y) = Ji2Tx ~ J (2:rt)a [(a- a ) 

+co 
+a' (1 - ex"-=-nY)] ~ \ (:p;)2 

nn' _t n 

X {I Vsph (Pz + liq2 n'a' x- X y + Y) 12 
Pz na x y 

X N qfnp "(1- ln•p +llq o•) 6 (8n•p +llq a'- Bnp .,-/iroq) 
% z z z % z 

+j v.t (P· + liq, n'a' X- X y + y) Ill N{/npzo (1- lnp.a) 
Pz na X y 

+I v.d (P· + liq. n'a'a X- X y + y) 12 
Pz naa' x y 

X na•lnp o(1- ln•p +llq o·) ~ (8n•p +llq a'- Bnp" z z % z z z 

- (a'- a) l\d)} [- (a - a') + (a' + -1- ~)· 
fls an 

X (e x Y-1) 6M(x, y). -X() +Ya ] 

Expanding in ( 4) the differential operators 
exp (± xax T Yoy) in powers of the operation 

(4) 

(X ox- Yoy), corresponding to expansion in increas­
ing powers of rL/L « 1, we obtain 

a Ml(x,y) (ax) (ox) 
-1'\M(x,y)+r - a .Dil, a 6M(x,y)=O, at Ts y , y h 

where the relaxation time of the spin magnetiza­
tion Ts is determined by the formulas 

(5) 

-1 -1 -1 L T-1. 
T 8 = Tsph + 'tsi I sd• (6) 

+oo 
-1 2:rtfl. 2 "" ( ')2"" (' dp. 

T sph = fi2TX. ~ a- Ci f;;, -~1"' (2:rta)2 

X' dq 3 1Vsph (Pz+liq, n'a' x-X y+Y)I2 
•· (2:rt) Pz na x y 

X Nqfnp u(1- fn•p +1iq ri') ~ (8n•p +llq a'- Bnp a -/iroq), (7) •z zz zz z 

2 • +oo 
r.l- 2:rtJ1s ~ ( - ')2"" ~ dp: 

,, -- "2T LJ a a ~ (2 )2 
fl X uu• nn' _00 :rta 

X \___!!_«<_f,Vsi(Pz+1iqz n'o' x-X y+Y)I2 

J (2:rt) Pz na X Y 

X Nifnp u (1- lnp a)~(8n•p +llq rr•- Bnp u), 
z z z % ! 

(8) 
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2 2 +)() d 
-1 nr.t. "'V ( ')2 ~ ~ Pz 'rsd = ~ L..J 0'- cr .LJ (2nu)2 

n X <1<1' nn' -oo 

X(' dq 3 1V•d (Pz + iiqz n'cr'cr x- X y + Y) 12 

,) (2n) Pz ncrcr' x y 

X na•fnpza (1- fn'p2+1tqz<i') {) (sn'pz+ltqzcr' 

- 8npz(j - (cr' - cr) ~d), ( 9) 

and the spin-magnetization diffusion coefficient 
takes the form 

-'-oo 
D(spn) 2l'tft82 ~ (' dq R ~ '(' dpz 

lk = ii2Tx ;;, J (2n)a lk ;f;, l, (2na)2 

X IVspn(Pz+Mz n'a' x-X y+Y)I2 

Pz na x y 

( 10\ 

X Nq/np o (1- fn•p +ltq a'){) (en'p +1lq a'- 8np a- iiroq), ( 11) z z z z z z 

+oo 
(si) 2l'tft82 ~ \ dq R ~ \ dpz 

D;k = ii2Tx ;; J (2n)3 ik ;;:, J (2na)2 
-00 

X 'lv•i(Pz+iiqz n'cr' x-X y+Y)\2 

Pz ncr x y 

X N;/np cr (1- fnp <1) {) (8n•p +1lq cr'- 8npza ), 
z z z z 

( 12) 

+oo 
(sdl_ 2nr.t.2 ~ ('~ • ~ (' ~ 

D,k - ii2Tx ;;, J (2n)a R,k ;;:, joo (2nu)2 

X IV•d(Pz+iiqz n'cr'a x-X y+Y)\2 

Pz ncra' x Y 

X nct•fnp ct'(1- fn•p +ltq d') {) (sn'p +ltq ct'- Snp cr z- z z z z z 

- (cr'- cr) ~d). ( 13) 

Recognizing that the displacement of the center 
of the electron orbit upon scattering is of the order 
of the Larmor radius, we can neglect in the region 
rL « L the influence of the inhomogeneities on the 
matrix elements of the scattering. Comparing 
(11)-(13) with the expressions for the transverse 
conductivity of the carriers in quantizing magnetic 
fields rsJ, we can readily establish after a number 
of estimates the following connection between the 
diagonal elements of the tensors of the magnetic 
spin diffusion Dii and the electric conductivity O"ii, 
which takes place when ~ s < E (E is the average 
kinetic energy of the conduction electrons): 

ft•2 
D;; = -·-2 cr;;. 

:x;e 
( 15) 

It follows therefore that for nondegenerate statis­
tics, when w 0T » 1 and T » hw 0, the spin diffusion 
coefficient coincides with the electron-density 
diffusion coefficient, since in this region x = J.l ~n 0/T, 
and ( 15) goes over into Einstein's relation between 
the electric conductivity and the density of diffusion 
coefficient. Formulas (6)-(9) for the spin-lattice 
relaxation time are suitable both in quantizing 
fields and in the classical region (in the latter case 
the quantum numbers of the electron in the mag­
netic field must be replaced by the components of 
the quasi-momentum Pal. 

3. Let us calculate the spin-lattice relaxation 
time T sd for the case of scattering of nondegener­
ate carriers by magnetic impurities in the quantum 
limit nw 0 > T. Assuming, as usual, that the 
Fourier transform J of the interaction Hamiltonian, 
which leads to a simultaneous spin flip of the elec­
tron and of the impurity, does not depend on the 
state of the conduction electron, we obtain 

I V.d(Pz+liqz n'cr'cr x-X Y+ Y)l 2 

\ Pz nacr' x y 

Jz { azq.L 2 } [ n! L'n'-nl ( a2q.L 2 ) 
~ exp ---- --- - --
~ 2 yn!n'! n 2 

X ( U
2~.L2 )'n'-nl ]2

1 ii = min(n, n'); 

Ls'(x)= ±( s+r )(-x)l, 
s- t t! 

t=O 

( 16) 

Substituting this expression in (9) and calculating 
the encountered integral, we obtain the following 
expression for T~~(nw 0 > T): 

liroo cosh(~./T) 
T,d-1 (liroo > T) = Tsd-1 (liroo < T) 4T cosh(~d/T) 

X Ko (I ~. -; ~d I ) , ( 17) 

where T sd(nw 0 < T) is the time of relaxation of the 
electron spin on the magnetic impurities in the 
classical region of variation of the magnetic field: 

2'1, J2ndm'hT'I, 
Tsd-1 (liroo < T) = -,1 li' 

l't 2 ' 

K0(x) is the Macdonald function. Thus, when ~ s or 
~ d > T, the dependence of T~~ on the temperature 
and on the field takes the form 

When 1-ld ~ 1-ls we have 
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so that T~~ diverges logarithmically if the mag­
netic moments of the conduction electron and of 
the impurity coincide 0 . This divergence is essen­
tially of the same nature as the divergences of the 
thermogalvanomagnetic coefficients in the quantum 
limit; it can be eliminated by taking into account 
one of the cutoff mechanisms at small longitudinal­
momentum transfers[6]. 
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