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It is shown within the framework of perturbation theory that the Heisenberg two-particle ma­
trix element (p · kjA(x) IP' · k') of a neutral scalar field has a singularity when K - 0, where 
K = p + k - p' - k'. 

1. In a previous paper[t) (referred to below as I) 

we studied the singularity of the Heisenberg two­
particle matrix element (p · kiA(x) IP' · k') of a 
neutral scalar field A(x) (where p, p' stand for the 
momenta of the particle of mass m, and k, k' stand 
for the momenta of the particle with mass M; we 
are using the in-basis). The discussion was carried 
out within the framework of axiomatic theory with 
the help of new physical quantities introduced 
in[2•3] -dynamical moments, a particular case of 
which are the integrals over currents considered 
recently by a number of authors. 

We studied the limiting behavior at infinity in 
time of the operator for the dynamical moment 
D(V, x 0): 

D(V, xo) = (1- V2) .,. ~ d3xA (x, Xo + Vx)' 

where V is a vector parameter such that V2 < 1, 
and it was shown that the matrix element ( 2jA(x) 12) 
possesses a singularity as the 4-vector K = p + 
k- p'- k' tends to zero. This singularity in the 
variable w = (Ko/IK0j)v'-K~ is pole-like. The resi­
due at the pole is related to the S-matrix off the 
mass shell. 

The aim of the present paper is to show the 
presence of this singularity in perturbation theory. 

2. Let us consider the two-particle matrix ele­
ment of a scalar current and show that in pertur­
bation theory it contains a diagram, which contains 
poles of the variable w. Let 1/J(x), x(x), and .P(x) be 
Heisenberg operators of three scalar fields with 
masses K, M and m, respectively, and let the inter­
action Hamiltonian be given in the form 

HI= g"ljl(x) (<l>2 (x) + x~(x)). (1) 

This system of interacting fields is described 
by the following integral equations of motion: 

¢(x)='ljl;n(x)+~ d4y!J.,.R(x-y)A(y), 

where Ll ~(x), Ll ~(x), Ll ~ (x) are the retarded 
Green's functions with masses K, M, m, and A(y), 
B(y), C(y) are the currents of the fields zp, x and .P. 
From Eq. (1) we have 

A (x) = g(C1>2(x) + x2 (x)), B (x) = 2g¢ (x) <I> (x), 

C(x) = 2g1Jl(z)x(x). (3) 

Using the iteration method one may obtain the value 
of the operator A(x) to any order in the interaction 
constant g. 

We need now to extract those terms in the ser­
ies which contain the pole obtained in I. To this end 
let us return to the considerations carried out in I. 

The parametrization (i.e., the representation in 
the form of invariant functions of invariant varia­
bles) of the two-particle matrix element of a scalar 
current may be written in the form [3 J 

e-ix(p-p') 

(pkjA(x) lp'k')= ~(k-k') (2n)3(4EE')''• !t(t) 

e-ix(k-k'l 

+ ll(p- p') (2n)3 (4co(J)') ,,,·Mt') 

e-i>=KF(s,. s', t, t',.u, u') 

+ (2n)3( 16EE' co(J)') 't. ' 

where 

E = (p2 + M2) 'h, E' = (p" + M2) '", 

•CO = (k2 + x2) 'I•, co' = (k'2 + x2) 'I•, 
t = -(p- p')2, s = -(p + k) 2, u = -(p'- k) 2, 

t' = -(k- k') 2, s' =•-(p' + k') 2, u' = -(p- k')2, 

xp =xp-xoE. 

With the help of the operator relation for dy­
namic moments 
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D(V, +oo) = S-1D(V, -oo)S 

it was shown in I that the interaction form factor F 
may be represented in the form 

c:p(s,t,w~,wz,w3) F ) 
F= . + (s, t, w, Wt, Wz, W3 , 

W-Ul 

w1=(s-s')/w, w2=(t-t')/w, w3=(u-u')/w, 

( 4) 

where wF- 0 for w- 0. According to Eq. (17) of 
I, the quantity <.p is expressed in terms of the in­
variant amplitude g(s, t): 

c:p(s,t,w~,w2,wa) = "(s t){ /t{O)_+ /2(0) } 
w - ie " ' 2pK - ie 2kK - ie 

• { ft(O) /2(0) } 
- g (s, t) 2p'K- ie + 2k'K-ie 

d3 II d3kll 
+ 2:rti I _!!__.- 64 (p + k - p" - k") 

J 2E" 2w" 

Xg(s t")g(s t'"){_MO_) -+__!:lO_) -}. 
' ' 2p"K- ie 2k"K- ie 

Here the invariant amplitude g(s, t) is related to 
the S-matrix in the well known way 

( 5) 

<pk lSI p'k'>= 6 (p- p') 6(k- k')- 2:rtW(K) (tfi~~;~~')''• 
and t" = -(p- p") 2, t'" = -(p'- p"')2. 

respectively masses m and M. Then 

I d4q6(q2+m2) 
l(K) = J G1G2G3G4 ' 

G1 = (q- K) 2 + m2 - ie(qo- Ko), 

G2 = ( q - K - p') 2 + x2 - ie ( qo - Ko - Po'), 

G3 = ( q - K - p' - k') 2 + M2 - ie ( qo - Ko - Po' - ko'), 

G4 = (q- K- p'- k' + k) 2 + x2 

- ie(qo- Ko- po'- ko' + ko). ( 6) 

Here the low of conservation of momentum p + k 
- p' - k' - K = 0 is explicitly taken into account. 

For simplicity let us consider a coordinate sys­
tem in which K = 0. In that case taking into account 
the presence of the 6 function under the integral 
sign the expression for G1 takes on the form 

Gt = (Ko- ie) (2qo- Ko) = (Ko- ie) Ct. (7) 

The first factor in Eq. (7) does not contain the inte­
gration variables and may be taken outside the inte­
gration sign. It is precisely the factor which gives 
the desired pole-like behavior provided that the re­
maining integral is not proportional to some power 
of K0• In order to show that let us carry out first 
integration over q0 with the help of the 6-function. 
Combining the two terms obtained in this way we 
reduce the integral to the form 

1 
Ko- ie 

Our aim is to obtain the pole expression, Eq. (5), J(K0 ) 

in perturbation theory. At that we shall pay special 
attention to the last term on the right hand side of ~ d3qP( a~, az,~h ~2, V1. V2, ).~> Az, qo) 

X 2qo(a~2-qo2a22)(~tz -qoz~z2)(Vtz ...:.._ qozV22)('A(i-_ qo2'Az2) Eq. (5) since the presence of the pole in diagrams 
corresponding to the first two terms is well known. 

The term of interest to us should contain, as 
seen from Eq. ( 5), the product of two invariant am­
plitudes and the vertex part. This will correspond 
to a five point function with four lines on the mass 
shell (two incident and two outgoing particles) and 
one line off the mass shell, referring to the momen­
tum of the Fourier transform of the current. In 
lowest order this diagram contains a closed loop 
(pentagon). Thus we should be calculating the two­
particle matrix element of the current A(x) in Eq. 
(3) accurate to fifth order in g and extract terms 
of the type indicated above. Direct calculation 
shows that there will be present five terms referr­
ing to diagrams with a pentagon. At that the four 
internal lines carry the retarded Green's function 
and the fifth carries o(qf + mfl where qi is the 
momentum of the i-th internal line. The five terms 
will differ only in the location of this 6 function on 
the internal loop. Let us write out one of them, 
J(K), omitting unimportant numerical factors. Let 
p and k be the 4-momenta of the incident particles, 
and p' and k' those of the outgoing particles with 

( 8) 

where qo = Vq2 + m 2; pis a polynomial in Cl', {3, y, 
A, q0; a, {3, y, A are determined from the relations 

Gz = ~~ + ~zqo, 
G4 = /.1 + "Azqo. 

We are interested in the dependence of the inte­
grand on K0 for small K0. To simplify further con­
siderations we impose certain restrictions. Let 
p' II k', and let in addition 

( 9) 

In that case the integrand may be expanded in 
powers of K0• A term containing K0 to the zeroth 
power will be present. This term will give in the 
given case the desired pole-like behavior. It should 
be noted that conditions (9) are not necessary for 
the existence of the pole, and are introduced only 
to simplify the discussion. 

3. Let us briefly discuss the result. First of all 
we note that the presence of the singularity in w 
was shown by a method different from that conven-
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tionally used in the study of Feynman diagrams. In 
the given case the discussion given here turns out 
to be simpler. As the length of the vector of one of 
the momenta vanishes the Gram determinant van­
ishes, det (PiPj) = 0 (where Pi refers to external 
momenta in the diagram). That type of relation 
usually characterizes singularities of the second 
type[4l. However, a special situation arises here. 
The point is that singularities of the second type 
arise in the case when the vectors of external 
momenta lie in the space of smaller dimensions 
and, consequently, the corresponding Gram deter­
minant vanishes. As a result, in particular, the 
appearance of singularities of the second type de­
pends strongly on the number of dimensions of the 
space. If, however, the length of the vector, corre­
sponding to one of the external momenta, tends to 
zero then the determinant will tend to zero inde­
pendently of the number of dimensions. 

The singularity described here was obtained in I 

by the study of the asymptotic behavior of dynamic 
moments of zero rank. It is of interest to carry out 
analogous considerations for dynamic moments of 
higher ranks. This will give the possibility of ob­
taining singularities which are absent in conven­
tional nonrenormalizable versions of perturbation 
theory. 
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