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Recently possibilities have been found and widely discussed by which it would seem that one 
avoids the difficulty in the neutrino theory of photons which was pointed out by Pryce. In the 
present paper it is proved in general form that for free fields and arbitrary N-particle states 
the requirements of invariance under space rotations, of statistics, and of genuine neutrality 
are incompatible for a compound photon (Pryce's theorem). The proof presented here takes 
in all of the constructions that have been suggested recently. 

1. INTRODUCTION 

THE neutrino theory of photons had only a short 
existence (six years) and then was refuted by 
Pryce's theorem. The idea was first put forward 
by de Broglie in 1932. [1] He proposed a simple 
model of the photon constructed from a neutrino 
and an antineutrino with equal energies and mo­
menta. If these particles are assumed to be free, 
then they must move in the same direction. In fact, 
let us denote the four-momentum of the photon by 
p11 and those of the neutrino and antineutrino by k11 
and k~. Then 

( 1) 

Taking the square of ( 1) and summing over J.t, we 
get cos e = 1' where e is the angle between k and k'. 

It was soon noted that the de Broglie photon does 
not obey Bose statistics. In fact, the existence of 
two photons in the same state for example, with 
momentum p) would mean the existence of two neu­
trinos in the same state (with momentum p/2), 
which is impossible if neutrinos are fermions. 

In 1935 JordanrzJ proposed a model of the photon 
constructed from two neutrinos each of which is in 
a superposition of states with different momenta. 
With an appropriate choice of the superposition 
coefficients such a model would assure the correct 
statistics. Thereafter there were a great many 
papers [:J-B l in which attempts were made to con­
struct the photon from neutrino fields. It appeared 
that complete success in this direction had been 
achieved by Kronigr7l in 1936. In 1938 the develop­
ment of the neutrino theory of photons was brought 
to a halt for a long time, actually until 1963, by 
Pryce's theorem.l9 l 
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Pryce noted that the fixing of the relative phases 
of neutrino states with different helicities means 
the choice of a vector a perpendicular to the mo­
mentum of the neutrino. Rotation of this vector 
around the axis lying along the momentum of the 
neutrino changes the relative phases of states with 
different helicities. When a photon state is con­
structed from neutrino states with fixed phases, 
the photon state depends on this arbitrarily chosen 
transverse vector a. At the same time there is 
nothing in the nature of the neutrino that would fix 
this choice, and therefore the construction should 
be invariant under a rotation of a. It turned out that 
such an invariance is in contradiction with the con­
dition of statistical compatibility. Accordingly, 
what Pryce showed is essentially the incompati­
bility of the statistical properties with invariance 
relative to a certain group of axial rotations. 

A different interpretation of this difficulty in the 
neutrino theory of photons was given in 1963 by 
Barbour, Bietti, and Touschek.f 10 l They assert 
that it is impossible to construct, from the com­
ponents of the wave functions of two massless 
fermions obeying the Dirac equation with m == 0 
and having collinear momenta, a transverse four­
vector-or, in the words of the authors, in the neu­
trino theory the photon is always longitudinal. The 
proof they give is as follows. 

One considers a fermion which obeys the Dirac 
equation and whose mass is Am while its momen­
tum is A k, 

(2) 

The neutrino is the limiting state of this particle 
for m - 0. By means of Eq. (2) we get the relation 
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2m:;j;('tk)v,.'IJ(Ak) = -2ik,.ijl(-rk)'IJ(Ak), (3) 

where "'A and T are numbers. The left member of 
this relation contains the only four-vector that can 
be constructed from the components of l/J(Tk) and 
l/J("'Ak), and the right member is a longitudinal four­
vector. With a gauge transformation the amplitude 
of a photon state of the type (3) can always be re­
duced to zero. 

It can be shown, however, that Eq. (2) and the 
relation (3) are not invariant under transforma­
tions which change the absolute value of k. And 
indeed when we go to the limit m - 0 the relation 
(3) becomes the trivial identity 0 = 0. In fact, for 
m = 0 we have yJ..!kJ..!lfi("'Ak) = l/J(Tk)yJ..!kJ..! = 0, from 

,/-·) 
Jl 1 +-ns u~ (n)= 
(&, P=1, -1; 

n = k/k) 0 

0 

From the Dirac equation for the neutrino one 
gets the following condition for the vector u(n)y.u(n) 
to be orthogonal to the direction of propagation Jn: 

u+(n)u(n) = 0. 

Using ( 4) , we find that there are always four 
linearly independent transverse four- vectors: 

u+t+l (n) v,.n_l-l ( n); u -1+1 (n) v,.u+l-1 ( n); 

U-1-l (n)y,.u+l+l (n); 

u+1-1 (n) v,.u-1+1 (n). 

(4) 

(5) 

Of course the condition (4) is not relativistically 
invariant: for any two four-vectors there is always 
a Lorentz frame in which their space components 
are not orthogonal. This corresponds to the situa­
tion with the potential AJ..! of the free electromag­
netic field, whose transversality in all Lorentz 
frames can be secured by means of a supplemen­
tary gauge transformation. 

Summarizing, we can say that this particular 
difficulty does not exist in the neutrino theory of 
photons. The only actual difficulty is that the con­
struction of a transverse four-vector is incompati­
ble with the requirements of the statistics. 

2. PRYCE'S THEOREM 

We shall assume that all of the states of an 
elementary particle are described by a single ir-

which it follows that 

0 = 1/2kvlP (-rk) ('Yv'YI-' + 'YI-''Yv)'¢ ( A.k) = kv~ (-rk) 6,.v'¢ ( Ak) 

In the four-component theory there is no diffi­
culty in practically constructing all transverse 
four-vectors from the wave functions of neutrinos 
with collinear momenta. In the representation in 
which 

N--(CJO), (01) /CJO) .... 'Y4 - 'Yi = -iv4a.i, l: = ,OCJ; - 10 OCJ' 

let us write out the four solutions u2 of the Dirac 
equation with m = 0 that correspond to the two 
values of the sign of the energy SH = w /k and the 
two values of the helicity r = l:k/k: 

-1 +1 -1 
-1 -1 +1 

n.1- in2 
-1 + llg 0 0 

0 0 

0 
n1- in2 

-1 +n; 
0 llt +in:?. 

1 + n 3 

reducible representation of the proper inhomogene­
ous Lorentz group. For a particle with zero mass 
the helicity is an invariant of this group, and there­
fore such a particle is characterized by a single 
value of the helicity. The antiparticle has the oppo­
site helicity. In fact, for the pseudoeuclidean space­
time the operations of time displacement and of 
space inversion commute. Therefore the total 
Hamiltonian must commute[ii] with the operator 
of space inversion Is, which changes the sign of the 
helicity. According to the hypothesis of the con­
servation of combined parity, Is= CP, where C is 
the charge-conjugation operator and P is the spatial 
parity; i.e., the operator Is, which changes the sign 
of the helicity, converts particle into antiparticle. 

This conception means in particular that the 
photon is a particle with a definite helicity (for ex­
ample, a right-circularly polarized photon); the 
particle with the opposite helicity (the left-circu­
larly polarized photon) is the antiphoton. The genu­
ine neutrality of the photon is a sufficient condition 
for the physical realization of superpositions of 
photon and antiphoton states (a photon with linear 
polarization) . 

Suppose we have several different massless 
fields with spin %. In the Hilbert space of their 
state vectors we define operators for creation of 
neutrino and antineutrino with momentum k: ci(k), 
dJ:(k), i = 1, 2, ... , M. In what follows it will be 
convenient for us to classify these fields according 
to the value of the helicity; therefore we denote 
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by ai(k) the operator of the i-th neutrino (or anti­
neutrino) field corresponding to helicity + %, and 
by bi(k) that for helicity- %. 

The problem of the neutrino theory of photons 
is that in the Hilbert space of the state vectors of 
neutrinos (or of several types of neutrinos) we are 
able to construct from the operators ai(k) and bi:(k) 
certain operators K+(p), w +(p), TJ+(p), ~+(p). These 
are to be creation operators for states of the neu­
trino field which we identify with photon states 
(with circular and linear polarizations). If from 
the commutation and transformation properties of 
the neutrino operators ai and bi there then follow 
the correct analogous properties for the photon 

operators K, w, TJ, ~, then we can without any con­
tradictions construct from the latter operators the 
Heisenberg operators for the field strengths E(x) 
and H(x) of the free electromagnetic field, obeying 
Maxwell's equations and the usual commutation re­
lations. 

We shall make the following assumptions about 
the neutrino and photon fields: 

1) Let U e be an operator which in the space of 
neutrino state vectors describes a rotation by 
angle e around the direction of the momentum k as 
an axis. Then 

Uea;(k)U6- 1 = ei612ai(k), Uebi(k)Ue-1 = e-i612bi(k). 

(6) 

2) If the neutrinos are fermions, then the opera­
tors ai(k) and bi(k) obey the following commutation 
relations: 

[a;+(k), ai(k')J+ = [bi+(k), bi(k')]+ = <'~ii<'~(k- k'). 

(7) 

All other anticommutators are equal to zero. 
If, on the other hand, the neutrinos are parafer­

mions, then we can write different commutation 
relations for the operators ai(k) and bi(k), depend­
ing on the value of the maximum occupation num­
ber.r12J 

3) There exist photons with right and left circu­
lar polarization, whose annihilation operators K(p) 
and w(p) have the following transformation proper­
ties: 

Uex(p)Ue-1 = ei6x(p), Uew(p)Ue-1 = e-iOw(p). (8) 

4) Simultaneously there exist photons with 
linear polarization, whose annihilation operators 
~(p) and 77(p) are linear combinations of K(p) and 
w (p) and satisfy the transformation relations 

Ues(P) Ue-1 = 6 (p) cos 8 + TJ (p) sin 8, 

UeTJ (p) Ue-1 = -6 (p) sin 8 + 1'J (p) cos 8. (9) 

5) It is also assumed that the photon operators 
satisfy the following commutation relations: 

[6(p), TJ+(p)]_ = 0, (10) 

['X(p), w+(p)]- = 0. (11) 

Equations (10) and (11) are the conditions for the 
photon to be genuinely neutral. No assumptions are 
made about the equations for the photons or the 
neutrinos. 

We identify with a photon state an N-particle 
state of the neutrino field(s) of one or more types. 

+ + + + The creation operators (K , w , ~ , 17) for photon 
states are expressed in terms of ai and hi.' Pryce's 
theorem, which we shall prove, is that the only 
quantities that satisfy the conditions ( 6) -( 11) are 
~ = 17 = K = w = 0, i.e., no photon states with the 
enumerated properties exist in the Hilbert space of 
neutrino state vectors. All of the present papers 
on the neutrino theory of photons are based on the 
assumptions made above, and therefore come under 
the theorem of Pryce as formulated here. 

At first we assume that the neutrinos are fer­
mions, i.e., that the operators ai(k) and bi(k) 
satisfy the commutation relations (7). We shall 
first of all give the proof of the theorem in the sim­
ple case in which there is a single neutrino field 
(with antineutrinos) and the photon states are two­
particle neutrino states. We denote by IJ.Lt, k1, J.L2• k2) 
the state vector of a two-particle state in which one 
neutrino (or antineutrino) has four-momentum k1 
and helicity J.L 1 and the other has k2 and J.L2• Using 
the completeness of the system of vectors 
IJ.L 1, k1, J.L2, k2) for two-particle states, we can show 
that the most general expression for the vector 

lei> ) of a two-particle state which is an eigenvec-
toF of PJ.L = k1J.L + k2J.L, with P4 = ip, is 

1 

I<Dp>= ~ ~dt..c,.,~.~,(t..,-r)IJ.L1,A.p,J.Lz,-rp) (12) 

"''"" 0 

with T = 1- A.. The relation (12) means that a pho­
ton state with momentum p is a superposition of 
two-particle neutrino states with momenta k1 and k2 
parallel top, exactly as was the case in the sim­
ple model of de Broglie (cf. Sec. 1). 

It is then not hard to show that in the state lci>p) 
the projection of the total angular momentum on 
the direction of the momentum p is equal to the 
sum of the helicities of the neutrinos, i.e., that the 
orbital angular momentum of the neutrinos does 
not contribute to the helicity of the photon. And 
finally, using an argument about the helicity of the 
photon, we get from ( 12) the most general expres-
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sion (on the assumption that photon states are two­
particle states of non-interacting neutrinos) for 
the operators for photons with definite momentum 
and with right (K) and left (w) circular polariza­
tions: 

1 

x (p) • ~ dA.A (A., 't) a ( A.p) a {'tp) , 

t 

ro(p) = ~ d'AB(A, 't)b(A.p)b('tp). (13) 

Owing to the identity of the two neutrinos and the 
anticommutation of the two operators a(p) and b(p) 
the superposition coefficients A(A., T) and B(A., T) 

have the following symmetry properties: 

A(A.,'t) = -A('t,A.), B(A.,'t) = -B('t,A.), 

A (t,, A.) = B(A., 'A) = 0. (14) 

According to assumption 4), there must exist 
operators ~ (p) and 7](p) for photons with linear 
polarizations, which are linear combinations of 
K(p) and w(p): 

~(p) = ax(p) + ~w(p), TJ(P) = vx(p) + 1\ro(p). (15) 

From (8) and (9) we find 

'\' = -ia, 1\ = i~. (16) 

It is not hard to verify that K(P) and w(p) as given 
by ( 13) satisfy the commutation relations ( 11), but 
there is still the condition (10). Substituting (15) in 
(10) and using (16), we get 

I al 2 [x(p), x+(p) ]-- I !3l 2 [ro (p), ro+(p) ]- = 0. ( 17) 

Equation (17) is the last requirement for com­
patibility of all the conditions 1) -5). We shall show 
that the relation (17) is possible only for A(A., T) 

= B(A., T) = 0. In fact, by simple manipulations 
using ( 14) and (7) we can get the result 

t 

= 21\(0) ~ dA.{IaA(A., 't) 12 

0 

0 

1 

- 41~1 2 ~ dA.IB(t., 't) l 2 b+(~p)b(A.p). (18) 

The operator ( 18) must give zero when applied to 
any state vector, and this requires that the coeffi­
cients of n(A.p) = a+(A.p)a(A.p) and of n(A.p) = b+(A.p)b(!l.p) 
vanish separately. We cannot take Ia 12 = 1!31 2 = 0, 
since this would contradict the assumption that 
linearly polarized photons exist, and consequently 
we arrive at the conclusion that A(!l., T) = B(!l., T) 

= 0. 
We now go on to the general case, in which 

there are M different neutrino fields and a photon 
state is an N-particle neutrino state. First, it 
again turns out here that the momenta of all the 
neutrinos making up a photon are parallel, and the 
helicity of the photon is equal to the sum of the 
helicities of the neutrinos. This leads to the most 
general expression for the operators for right and 
left circularly polarized photons: 

x(p)= ~dN-IJ.Aa({A.})a;(A!p) ... 

( 19) 

x(p)= ~dN-fA,Ba({A.})b;(A.tp) 

(20) 

Here the Jntegration is over a bounded hypersur­

face S: L A.i = 1, 0 ::s A.i ::s 1; a is a set of indices 
i=1 

i, ... , l numbering the neutrino fields; {A.} is the 
set of variables of integration; and the superposi­
tion coefficients Aa({t..}) and Bu{{A.}) are antisym­
metric under simultaneous odd permutations of the 
indices of the fields and of the variables of integra­
tion. The expression (19) contains as factors n 
operators a and m operators b, and vice versa for 
(20): n + m = N, n- m = 2. In the case m = 0 the 
photon is a two-particle neutrino state. We then 
have [K(p), w+(p)l- = 0, but [~(p), 1)+(p)l-.., 0. The 
proof is essentially the same as in the case we have 
treated, that of a single neutrino field. For m .., 0 
we even have [K (p), w + (p) 1- .., 0. 

We now go on to the case in which the neutrinos 
are parafermions. Here we shall confine ourselves 
to the treatment of two-particle neutrino states 
only. First let us assume that the maximum occu­
pation number is nmax = 2 and the operators a(k) 
and b(k) in (13) satisfy the following commutation 
relations[ 12 ]: 

c(k)c(k')c(k") + c(k")c(k')c(k) = 0, 

c+ (k) c (k') c (k") + c (k") c (k') c+ (k) = !') (k- k') c (k"), 
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c (k) c+ (k') c (k") + c (k") c+ (k') c (k) 

= 1\(k- k')c(k") + 6(k'- k")c(k). (21) 

Here c(k) means a(k) or b(k). It is not hard to see 
that 

[x(p),x(p')]-= [w(p),(J)(p')]-= [x(p),m(p')J-= 0. 

But the condition for the existence of linearly 
polarized photons imposes another requirement: 
the commutators [K(p), K+(p)l- and [w(p), w+(p)l­
must be c-numbers (this requirement is identical 
with the supplementary assumption with which the 
commutation relations of the usual statistics can 
be derived from the equations of motion [t 3]). We 
shall show that this requirement contradicts the 
commutation conditions (21). Using (21), we get 

i 

[x(p),x+(p)l-= ~ dJ.IA(J.,-r) 

+ 12 {a(A.p)a+(A.p)- a+(-rp)a(-rp)}. 

For IA(A., T) 12 ~ 0 the expression on the right cannot 
be a c-number, since for nmax = 2 an interchange 
in the product of two operators gives an expression 
which is linearly independent of the original ex­
pression, and therefore the entire expression in the 
right member is a sum of linearly independent 
operators. 

For nmax = 3 the proof is analogous to that 
given above, and for nmax > 3 

i i 

[x(p),x+(p)]-= ~ d'J... ~dJ.'A(A.,-r)A*(A.',-r') 
0 0 

X [a (l..p) a (-rp), a+(-r'p)a+('J...'p) 1-

cannot be a c-number, since an interchange in the 
product of four operators gives an expression 
linearly independent of the original one. The proof 
as given can be easily extended to the case in which 
there are two independent neutrino fields. 

In the course of the proof of Pryce's theorem we 
have explicitly assumed that a photon state is a 
two-particle (or an N-particle) neutrino state. 
There also exists, however, a different assumption, 
which, following Pryce,E9 J we can explain in the 
following way. 

The photon is not a particle at all. All electro­
magnetic processes are in reality transitions of 
neutrinos from one state to another. For example, 
the process of absorption of a photon with momen­
tum p consists in a transition of a neutrino from a 
state with momentum k + p to a state with momen­
tum k. In such a model, however, there are diffi­
culties with the vacuum. In fact, instead of (13) we 

would then have to write the operator for creation 
of a ''photon'' in a form such as 

i 

x+(p) = ~ d!.A (I., •) b+(A.p) a ('rp). 
0 

With such a definition there cannot occur, for ex­
ample, any emission of a photon into vacuum, since 
K+(p) acting on the neutrino vacuum gives zero. 
Physically this means that if there are no neutrinos 
capable of accepting the energy and momentum of 
an excited atom emission of radiation is impossi­
ble. On the other hand ejection of neutrinos from 
states of negative energy means creation of neu­
trinos and antineutrinos-that is, in this case the 
photon is again identified with a two-particle neu­
trino state. To explain the emission of a photon by 
an atom in vacuum it is of course possible to as­
sume that there is always some number of free 
neutrinos. But then they must solidly fill the lower 
levels (otherwise under any conditions there would 
always be observed photons, for example of visible 
light, in an absolutely light-tight room), and then 
the transfer of energy by a neutrino would again 
mean the production of a free neutrino and a "hole." 
In any case in such a model the probability of emis­
sion of radiation depends on the state of the field of 
free neutrinos. 

3. PRYCE'S THEOREM AND PRESENT-DAY 
MODELS OF THE NEUTRINO THEORY OF 
PHOTONS 

Discussions of the neutrino theory of photons 
have been given in a number of recent papersJ14- 19 ] 

Let us examine how Pryce's theorem, as proved 
here, extends to the constructions of Perkins[14 J 
and of Ferretti and Venturi.[t 5] 

Perkins considers essentially the ordinary four­
component Dirac equation with m = 0, and from two 
neutrino operators in the configuration space he 
constructs in a special way the tensor of the elec­
tromagnetic field. For him the photon operators 
with right and left circular polarizations are then 
of the following form: 

• p 

x(p)= ~ ~ c2(k)a1(p-k)dk, (22) 
"fp 0 

p 

w(p) = ~ ~ c1(k)a2(p- k)dk. (23) 
iP 0 

Here a 1 and c2 are annihilation operators of the 
neutrino v 1 and the antineutrino 112 ; a 2 and c1 are 
the annihilation operators of the neutrino v2 and the 
antineutrino v1• The neutrinos v1 and v2 have differ­
ent helicities. Accordingly, in our terminology, the 
Perkins model is a two-particle model in the case 
of two different neutrino fields, and (22) and (23) 
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are essentially a special case of (13) with A(;\, T) 
= B(;\, T) = ip-1/2. 

The difficulty presented by Pryce's theorem in 
this model is that it is impossible to construct 
linearly polarized photons with the commutation 
relations (10) for their operators. The impossibil­
ity of constructing a linearly polarized photon could 
be interpreted as a loss of genuine neutrality of the 
photon, since in this case a superposition of right 
and left circularly polarized photon states can fail 
to have physical meaning, and then it is impossible 
to require the commutation relation (10). We shall, 
however, show at once that the additional assump­
tion with which Perkins derives the Planck distri­
bution for composite photons leads to relativistic­
ally noninvariant commutation relations. 

Perkins assumes that the only momenta the neu­
trinos can have are multiples of a small quantity 
E/2: k = E/2, 3E/2, 5E/2, ... , (2n + 1)E/2. Then 
the operator for absorption of a photon with mo­
mentum E can be written uniquely up to a coefficient 
[this can be understood directly, or can be seen 
from Eq. (22), where the integral becomes a sum, 
which in this case is a single term]: K(E) 
= c2(E/2)a1(E/2). It is easy to see that 

x(e}x(E) = 0. (24) 

For the operator for a photon with momentum 2E 
we have 

x(2e} = c2(e/ 2}at(3e/ 2) + c2(3e/ 2}at(e/ 2}, (25) 

x(2e}x(2e)x(2e) = 0, x(2e}x(2e} =I= 0. (26) 

When we apply to (24) the operation of the Lorentz 
transformation corresponding to the change E - 2E, 
we get K(2E)K(2E) = 0, which contradicts (26). 

The physical meaning of the proof we have given 
is obvious. According to (24), (25), and (26), the 
maximum number of photons that can be in a state 
with momentum E is one, and for momentum 2E the 
number is two. Such a condition is not relativis­
tically invariant, since we can always find a 
Lorentz reference system in which the former 
state is characterized by the momentum 2E, and 
consequently can be occupied by two photons, not 
only one. 

To overcome the difficulty connected with 
Pryce's theorem, Ferretti and Venturi [15] propose 
considering a system of two noninteracting neu­
trinos with total angular momentum m > 1. They 
write out the equation for the noninteracting neu­
trinos and antineutrinos in configuration space (the 
two-component theory is considered) : 

(27) 

Here cpll'(x, x') is the wave function of the neutrino­
antineutrino system; primed quantities relate to 
the neutrino and dotted ones to the antineutrino; 
a(r) are the Pauli matrices; l, l' = 1, 2; r = 1, 2, 3. 
The authors of[15J find the solution of Eq. (27) with 
definite total momentum p and with the value m for 
the projection of the angular momentum along the 
direction of the momentum: 

X exp {- i [ ( ~ + k) Xo + ( ~ ---k) Xo'] 

+ i [ ( ~ + k) x3 + ( ~ -k) xa']}; 
f.; , C 2im ( ')m-1 

·1 = - --- X --X 
p- 2k - - ' 

(!.2' = C (x_- x_')m (m>O); 

fi2' = C' 2i I m I ( _ ')lml-1 + k X+ X+ , P. 

(28) 

where x- = x 1 - ix2, x + = x 1 + ix2, and C and C' are 
constants. . 

It must be noted, however, that cpll' (x, x') is a 

solution of (27) only for fi 2' = f2 1' = o. This is phys­
ically understandable and is verified by direct sub­
stitution of (28) in (27). 

Let us see whether in the problem as stated 
th~re can exist a physically meaningful solution 

cpll' (x, x') with a value m > 1 for the projection of p,m 
the total angular momentum along the momentum. 
In this case the connection between the helicity of 
the composite photon and the helicities of the neu­
trinos, which was used in the proof of Pryce's 
theorem, corresponds to the following easily proved 
statement. 

If a function cp(x, x') (a scalar for simplicity) 
has the following properties 

_ ( a a ) , ( ') -t.-a-+-a , <p(x,x)=p"'<p x,x; 
• XJ.L XJ.L 

p"'z = 0, 1.1. = 1 2, 3, 4, (29) 

a2 a2 
-a 2 <p(x, x') =-a ,2 <p(x, x') = 0 (30) 

XJ.I XJ.L 
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and cp(x, x') can be expr.essed as a Fourier integral, 

<p(x,x')= ~ d4k ~ d4k'f(k,k')ei(kx+k'x'), (31) 

then PjLjcp(x, x') = 0, where Lj = -iejzm<xz8/8xm 

+ x'z8/8x~); ej Zm is the unit antisymmetric ten­
sor; j, l, m = 1, 2, 3. The Ferretti-Venturi func­
tion 

IJlm(X, x') = C(x-- X-')m 

X exp {-i [ ( ~ + k) xo + ( f - k )xo' J 

+i u: +k )xs+ (: -k )xl]} 
satisfies the requirements (29) and (30), but never­
theless for it we have 

PiLiff!(X, x') = m<p(x, x'). 

The point is that cpm(x, x') does not obey the condi­
tion (31). To be expressible as a Fourier integral 
it should obey the condition of absolute convergence 

~ d2(x- x') I IJlm(x, x') I< oo. (32) 

It is easy to see that the cpm(x, x') of Eq. (28) does 
not satisfy (32) for any m (positive or negative) 
other than m = 0. 

Accordingly, the case considered in[15J is one in 
which the particle is described by a wave function 
in configuration space but no wave function in 
momentum space exists. Besides this, the space of 
the solutions that are found is not a Hilbert space. 
It must be noted that Ferretti and Venturi [! 5] did 
encounter this difficulty in going over to momentum 
space in a nonexplicit form, and owing to this the 
relation (8) in their paper is incorrect. But even if 
we forget this objection for the time being, it un­
fortunately is still difficult to accept the proof of 
the commutation relations in[ 15J as convincing. In 
fact, the state vector which describes m 1 right cir­
cularly polarized photons and m~ left circularly 
polarized photons with momentum q1, m 2 right cir­
cularly polarized and mf left circularly polarized 
photons with momentum q2, and so on, is defined by 

= B(m1, m 1', q!)B(m2, mz', q2) ... 

. . . B(mn, m,', qn) /0), 

where B(m, m', q) = A(m, q)A(-m', q); A(m, q) is 
the operator for creation of the two-particle state 

(neutrino and antineutrino) in which the total 
momentum of the two particles is q and the projec­
tion of the total angular momentum along the 
momentum ism. This two-particle neutrino state 
is taken for the m-particle photon state describing 
m right circularly polarized photons. Therefore 
the vector lm1, m~, ... , mn, m:fJ.) describes a 4n­
particle neutrino state and the vector 
A(1, q) lm 1, m~, ... , mn, m:fJ_) describes a 
(4n + 2)-particle neutrino state. Accordingly the 
matrix element 

is always equal to zero, a result different from 
Eq. (10) of[15J. 

I thank E. S. Fradkin and V. Ya. Fa'i'nberg for a 
discussion of some particular questions in this 
work. 

1 L. de Broglie, Compt. Rend. 195, 862 (1932), 
199, 813 (1934). 

2 P. Jordan, Z. Physik 92,464 (1935). 
3 P. Jordan, Z. Physik 98, 759 (1936). 
4 P. Jordan, Z. Physik 105, 569 (1936). 
5 P. Jordan and R. de L. Kronig, Z. Physik 100, 

569 (1936). 
6 R. de L. Kronig, Physica 2, 854 (1935). 
7 R. de L. Kronig, Physica 3, 1120 (1936). 
8 N. S. Nagendra Nath, Proc. Indian Acad. Sci. 3, 

448 ( 1936). 
9 M. H. L. Pryce, Proc. Roy. Soc. A165, 247 

(1938). 
10 1. M. Barbour, A. Bietti, and B. F. Touschek, 

Nuovo Cimento 28, 452 ( 1963). 
11 Yu. M. Shirokov, JETP 34, 717 ( 1958), Soviet 

Phys. JETP 7, 493 (1958). 
12 S. Kamefuchi and Y. Takahashi, Nucl. Phys. 36, 

177 ( 1962). 
13w. Pauli, Revs. Mod. Phys. 13, 203 (1941). 
14 w. A. Perkins, Phys. Rev. 137, B1291 (1965). 
15 B. Ferretti and I. Venturi, Nuovo Cimento 35, 

644 (1965). 
!6 B. Ferretti, Nuovo Cimento 33, 264 (1964). 
t7p_ F. Smith, Nuovo Cimento 38, 1824 (1965). 
18 B. Jouvet, Nuovo Cimento 38, 951 (1965). 
19 P. Bandyopadhyay, Nuovo Cimento 38, 1912 

(1965) . 

Translated by W. H. Furry 
166 


