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Cross sections for direct reactions of the type A(x, xy)B are investigated as functions of the 
transferred momentum and the kinetic energy of the emitted particles near a moving com­
plex singularity with respect to these variables. The possibility of utilizing normal threshold 
singularities of triangular diagrams for identifying the mechanism of the reaction is noted. 
Analytic formulas are obtained for the differential cross section and contour maps are given 
of the surface corresponding to this cross section. 

1. INTRODUCTION 

AccORDING to present ideas a direct process 
reduces to reactions occurring between an incident 
particle and virtual particles. The number of vir­
tual particles, the values of their masses and also 
the type of virtual reactions determine the mecha­
nism of the process which in an essential manner 
affects the dependence of the amplitude on the kine­
matic variables, or, in other words, the position 
and nature of the singularities of the amplitude with 
respect to these variables ( cf. [ 1 l ). It is clear that 
it is desirable to conduct the experimental investi­
gation of a direct reaction undertaken in order to 
ascertain its mechanism, over a range of values 
of the kinematic variables which is situated as 
closely as possible to the expected singularities. 

As a rule, the amplitudes for direct reactions 
of binary type (two particles in the final state) 
have singularities with respect to the transferred 
momentum which occur at real negative values. 
These singularities are situated fairly close to the 
boundary of the physical region for reactions of 
deuteron stripping and pickup. In other cases the 
singularities lie considerably further, and as a re­
sult of this the dependence to which they give rise 
of the differential cross section on the transferred 
momentum is much less pronounced. Because of 
this it often turns out to be difficult to identify the 
mechanism of the reaction by measuring angular 
distributions. 

An essentially different situation occurs for 
reactions with the production of three particles, in 
particular for processes of the type 

A+ X--+ B +X+ y. (1) 

It turns out that in this case new possibilities 
arise for establishing the mechanism of the reac­
tion by studying the dependence of its amplitude on 
two variables-the energy w of the particles in 
their c.m.s. and the transferred momentum q 
== I Px - P~ I, where Px and p~ are the momenta of 
particle x before and after the reaction. The new 
features compared with binary reactions are in 
this case, first of all, the motion of the singulari­
ties, i.e., the change in the position of a singularity 
with respect to one of the variables (for example, 
with respect to w) depending on the value of the 
other variable (q) and, secondly, the fact that 
these singularities can be complex. 

If wb. and q-6 are complex singularities with 
respect to the variables w and q, then Re w b. 
and Re qb. are numbers lying within the range of 
physical values of the variables w and q. If, 
moreover, Im w b. and Im qb. are sufficiently small 
(this condition is made more precise later), then 
the singularities will be situated close .. to the physi­
cal region similarly to the situation which exists 
in the case of a Breit-Wigner resonance level. 
Then for values of w lying in the neighborhood of 
Re Wb. irregularities appear in the dependence of 
the differential cross section on w the position 
and shape of which will depend on the transferred 
momentum q. Assuming a definite mechanism for 
the direct process (1) one can theoretically calcu­
late the function wb.(q) and the behavior of the 
differential cross section 82a /8w8q2 near the sin­
gularities. 

The aim of the present paper is to derive ap­
propriate formulas and also to obtain graphical 
material suitable for comparison with experimen­
tal data. 
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The problem of the position of complex singu­
larities of nonrelativistic diagrams was first con­
sidered by Blokhintsev, Dolinski!, and Popov. ( 2J 

Later Valuev( 3J and Anisovich and Dakhno( 4J cal­
culated the behavior of the cross section near the 
singularity for the reaction N + 1T - N + 27T and 
Dal 'karov[ 5 J calculated it for the reaction p + d 
- p +X. Our results, as applied to direct nuclear 
reactions, differ from [ 3- 5 J by a greater degree 
of generality (the formulas given below and the 
numerical results are valid for all nonrelativistic 
reactions of type (1)) and by a complete investiga­
tion of the surface a2u(w, q2)/8wBq2• The latter 
turns out to be essential from the point of view of 
choosing optimum conditions for the experimental 
observation of complex singularities. 

2. TRIANGULAR DIAGRAM. DIFFERENTIAL 
CROSS SECTION 

The simplest mechanism for the reaction (1) is 
the quasielastic scattering of particle x by parti­
cle y which corresponds to a pole diagram. Such 
a mechanism yields a singularity with respect to 
the variable (q - Py) 2 (Py is the momentum of par­
ticle y), but in this case there are no singularities 
with respect to the variables w and q determined 
by the diagram itself. The simplest mechanism 
which leads to the appearance of such singulari­
ties corresponds to the triangular diagram shown 

FIG. 1. The triangular dia­
gram corresponding to the re­
action A+ x _, B + x + y. 

in Fig. 1. According to this diagram the whole 
process reduces to three virtual reactions; to the 
decay of nucleus A into the virtual particles B' 
and y'. 

A -B' + y', (2.1) 

to the elastic virtual scattering of the incident par­
ticle x by particle y', 

x + y' -x + y', (2.2) 

and to the virtual reaction which leads to the pro­
duction of final particles B and y 

B' +Y'-B+ y. (2.3) 

If B' = B and y' = y, i.e., if the virtual reac­
tion (2. 3) is elastic scattering, then the diagram of 
Fig. 1 corresponds to taking into account the so­
called final state interaction. 

The triangular diagram of Fig. 1 corresponds 
to the amplitude (cf. [ lJ) 

Mll(w, q) = -i(2:rt4h)-1 my,2 mB' ~ MA MxxMy'y dpY' dEy' 

(py.2- 2my' Ey'- iO) (PY''2- 2my.Ey/ - iO) (pB'2 - 2mBEB'- iO) 
(2.4) 

Here (and in the rest of our discussion) mi, Eb 
Pi denote respectively the mass, the kinetic en­
ergy and the momentum of the i-th particle; MA, 
Mxx and My'y are respectively the amplitudes 
for the virtual reactions (2.1), (2.2) and (2.3). All 
the amplitudes are rectangular matrices with re­
spect to the spin indices, so that the numerator in 
the integrand should be interpreted as a product 
of rectangular matrices. 

Each of the amplitudes MA, Mxx, My'y depends 
on the kinematic variables of the virtual particles. 
However, since we are interested in the behavior 
of the amplitude M ~ near the singularity we can 
treat MA, Mxx and My'y as constants. Indeed, 
at the singularity w = w ~(q) the momenta of all 
the virtual particles lie on the mass surface and, 
therefore, are uniquely determined by the conser­
vation laws and by the Landau conditions (cf., for 
example, [ 1J, p. 39). From this it follows that the 
amplitudes for virtual processes for w = w~(q) 

appear in M ~ with completely determined values 

of the kinematic variables, and if these values are 
not singularities of the amplitudes MA, Mxx and 
My'y then we are justified in taking these quanti­
ties outside the integral sign in (2.4) since the re­
mainder of the integrand is a rapidly varying func­
tion near the singularity w = w~(q). In this ap­
proximation the integral (2.4) can be evaluated, 
and the amplitude M~ will have the form 

Mll(w, q) = Cfll(w, q), (2.5) 

where C is a rectangular matrix with respect to 
the spin indices of the initial (A, x) and final (B, y) 
particles which does not depend on w and q: 

(2.6) 

(2.7) 
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-mAX ql'>.- iq 
h=---ln---

mB' q q"" + iq ' 
(2.8) 

(2. 9) 

p2 = 2mB'y'( Ul - Q) 

(2.10) 

The function f~has two singularities: a branch 
point involving a square root at w = Q (the so­
called normal threshold) and a logarithmic branch 
point. The motion of the singularity w ~ of the 
function f~ with respect to the variable w depend­
ing on the variation of the transferred momentum 
q in the physical region (q > 0) is given by the 
equation 

Ull'>.(q)- Q ( mB' )2 q2 . mB' q (2.11) 
--'----= -- ---1+2~---. 

e mA x2 mA x 

Similarly the motion of the singularity q~ of 
the function f~ with respect to the variable q de­
pending on w (w- Q ?:: 0) is determined by the 
equation 

(2.12) 

The sheet of the square root in (2.9) is chosen so 
that the complex plane z = -p2 is cut along the 
real negative semi-axis, while the sheet of the 
logarithm ln z is determined by the inequality 

-n ~ arg z < n. 

As can be seen from (2.11) the degree of near­
ness of w ~(q) to the physical region is determined 
by the smallness of K, i.e., by the smallness of the 
binding energy E of particles B' and y' in nu­
cleus A. 

For subsequent discussion it will be convenient 
for us to go over to the dimensionless variables 

(j)-Q 
s=-· -, 

e 
(2.13) 

Equations (2 .11) and (2.12) for the motion of the 
logarithmic singularity then assumed the form 

(2.14) 

s"" = ').. - 1 + 2il'~. ').. ~ o, (2.15) 

while the dimensionless amplitude f~ is given for 
real nonnegative values of A by the equation 

h(s,A)= ~[~In (l's-l'A)2+ 1 
l'A 2 (l's + l'')..,) 2 + 1 

2i').., ] + i arctg , s ~ 0, 
£-')..,+1 

2i -y""i, 
/6(£,')..)=-=-arctg , s<O. 

l'A 1 +1-s 
Here we have 0 :=:; tan -i < 1r. 

(2.16)* 

(2.17) 

As has been already pointed out, contributions 
to the amplitude of reaction (1) are made, in addi­
tion to the triangular diagram considered above, 
also by other diagrams (in particular, the pole di­
agram). Therefore, the total amplitude for the 
reaction M should be written in the form 

(2.18) 

where we denote by MR the contribution of all the 
other diagrams. 

As a rule it is difficult to make a definite theo­
retical statement regarding the relative values of 
I M~ I and I MR I, but it is possible to separate out 
the amplitude M ~ near w ~ experimentally on the 
basis of the fact that in this region MR must vary 
considerably more slowly than M~, and can, 
therefore, be treated as a constant. 

We obtain the differential cross section for the 
reaction by starting with the formula 

1 IMI 2 
I ( 1 ) da = ---.. -~(ef- e;) 1\(pf- p;) dpx dpy dpB. 2. 9 

v (2rtr£ )5 

where v is the relative velocity of the initial par­
ticles; Ei> Ef, Pi• Pf are respectively the total en­
ergies and momenta of the initial and final states. 
After summing and averaging over the spins the 
differential cross section can be written as a func­
tion of the variables !; and A in the form 

(2.20) 

Here 

(2.21) 

(2.22) 

(Jx, J A are the spins of particles x and A), 

1/(s, ')..)1 2 = lhl 2 +2aRef.l+2blm/f'>.+c, (2.23) 

a, b, c are real constants: 

a+ ib = SpMRC+ 
SpCC+ ' 

*arctg = tan"'. 

(2.24) 
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The relation between the differential cross sec­
tion a2 cr/a~aA. and the differential cross section 
a2cr/E~dz is given in the laboratory system (PA = 0) 

by the relation 

82cr m,. mB,'f• Px Px' 82cr Px Px' 
~~=------, Z=--, (2,25) 
8E,.' az fj, m'~~ mAe2 8~ 81. Px Px' 

where E~ is the kinetic energy of particle x after 
the reaction. 

3. DISCUSSION OF THE RESULTS 

As can be seen from formula (2.23) the depend­
ence of the cross section on the variables ~ and 
A. is determined by an expression containing three 
unknown real constants. If C and the amplitude 
MR do not depend on the orientation of the spins 
of the particles participating in the reaction, then 
the number of independent constants is equal to 
two (in this case c = a2 + b2). The constants a, b, 
and c must be determined from experimental data 
from the values of the differential cross section at 
three arbitrary points of the (~, A.) plane, and the 
resultant formula must then describe the whole 
surface a2cr ;a~ aA. (we emphasize that this means 
that the introduction of a maximum of three con­
stant parameters permits the description of a 
large number of curves corresponding to different 
sections of the surface). 

In order to visualize the degree of sharpness of 
the functional dependence determined by formula 
(2.23) it is useful to construct for each of the first 
three terms in (2.23) contour lines, i.e., curves in 
the (~, A.) plane along which the corresponding func­
tion of ~ and A. remains constant. It is not possi­
ble to obtain the equations for the contour lines of 
the surface lf6(A., 01 andRe f6(A., 0, Im f6(~, A.) 
in explicit form solved with respect to ~ or A.. 
However, it is possible to construct analytically a 
two parameter family of contour lines of the func-
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FIG. 2. Contour map of the surface \ft1(~, .\)\ 2 • 

0 

FIG. 3. Contour map of the surface Re f!).(~, ,\). The num­
bers indicating the altitude of the contours are equal to 
100 Re f!).(~, ,\). 

tion A.lf6(~, A.)l 2• After performing on these lat­
ter contour lines a geometric transformation cor­
responding to the algebraic operation 1,/,\ we ob­
tain contour lines of the surface I f6(L A.)l on the 
half-plane A. ~ 0, -oo < ~ < oo, which represent a 
surface monotonically decreasing as we move 
along any ray emerging from the point A. = ~ = 0. 
The curves of the contour lines of the surfaces 
Ref6(L A.), Im f6(~, A.) also have negative curva­
ture. The section of the surface Im f6 (~, A.) by the 
vertical plane along the straight line A. = const has 
a single extremum (peak) at ~ = 0. 

The contour lines of the surfaces lf61 2 and 
Re f6 are given respectively in Figs. 2 and 3. The 
surface Im f6 is very close in its structure to the 
surface I f61 (this is related to the fact that in the 
range of values under investigation the principal 
contribution to lf61 is given by Im f6)· From 
Figs. 2 and 3 it can be seen that the sections by 
the planes A. = const or ~ = const are by no means 
always the optimal ones for the discovery of func­
tional relationships brought about by the complex 
singularity. In particular, if the dominant contri­
bution to (2)23) is given by the terms I f61 2 

+ 2b Im f6, then the most pronounced irregularity 
will appear if the section is made by a vertical 
plane along the straight line orthogonal to the line 
A. = ~ + 1 which is a projection of the trajectory of 
the complex singularity (2.15) on the (~, A.) plane. 
But if the dominant contribution is given by the 
term aRe f6 then the most prominent irregular­
ity will appear if we take the section of the sur­
face a2cr/8~ a A. by the vertical plane along the 
straight line ~ = A. + 1 orthogonal to the projection 
of the complex singularity (2.14) on the (~, A.) 
plane. In all cases the dependence on the kine­
matic invariants q, w is the more pronounced the 
smaller are the values of E and K. This circum-
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stance is a consequence of the approach of the 
complex singularity (w~ or q~) to the Re w, Re q 
plane on which the physical region is situated. 

Another important factor which facilitates the 
experimental observation of the complex singu­
larity is the greatest possible size of the physical 
region. The dimensions of the physical region are 
determined by the inequalities 

4~Ax~ + (2~Ax - ~ - a'A- 1 + ~o) 2 ~ 4~Ax (~Ax - 1 + ~o), 
(3.1) 

~ ~ ~o = -Q I e, 'A~ o, (3.2) 

where ~Ax is the kinetic energy WAx of the col­
liding particles A and x in their center of mass 
system expressed in units of ~ (~Ax = wAx/E), and 

(3. 3) 

The boundary of the physical region is the pa­
rabola whose symmetry axis makes an angle 
cp = tan -i [ mx/(mA + mx)] with the ~ axis. The 
maximum value ~m of the variable ~ is given by 
the equation 

~m = ~Ax - 1 + ~0· (3.4) 

The value of A. corresponding to this point is 

A (~m) = a-!~Ax· (3.5) 

The minimum and the maximum values of A. cor­
responding to ~ = ~ 0 = -Q/E are determined by 
the relation 

A= a-l()'~Ax + l'SAx- 1) 2• (3.6) 

From formulas (3. 4)- (3. 6) it can be seen that 
the boundaries of the physical region spread out as 
the initial energy ~Ax is increased. In particular, 
for ~Ax » 1 the region of the most rapid varia­
tion of Re f~ determined by the complex singu­
larity becomes accessible, while for 

~Ax~ (a+ 1- so) 2 I 4a. (3. 7) 

a segment of the straight line which is the projec­
tion of the trajectory (2.15) of the complex singu­
larity, which we have mentioned before, is con­
tained in the physical region. 

We note that since for the majority of nuclei E 
does not exceed 10 MeV energies of the order of 
100 MeV in the center of mass system of the reac­
tion are already sufficient for the experimental de­
termination of the complex singularity correspond­
ing to the diagram of Fig. 1. 

We now investigate the manner in which the ex­
istence of a square root singularity at the point 
~ = 0 affects the behavior of the cross section. 

This point lies in the physical region only in the 
case when ~ 0 ~ 0, i.e., when the virtual reaction 
(2. 3) is exothermic or when it represents elastic 
scattering. In the interval ~ 0 ~ ~ ~ 0 the expres­
sion for f~ is determined by Eq. (2.17). As can 
be easily seen on comparing (2.17) and (2.16), f~ 
is continuous at the point ~ = 0, while its first de­
rivative has a discontinuity at that point: 

h'(~-++0)= ~[1_ +-2i_]' 
1+"- l"s 1+"- · 

(3.8) 

h' (~-+ -0) = i . 

(1 + A.)l"-6 
(3. 9) 

The discontinuity in the derivative will manifest 
itself in the differential cross section in the form 
of a characteristic peak[ 61 (cf., also [ 71 ) which 
will be the sharper the smaller is the value of A.. 
Equations (3.8) and (3.9) show how the shape of the 
peak near ~ = 0 will change as the transferred mo­
mentum A. is varied. The curves corresponding to 
the section of the surface Im f~ and Re fLl by 
vertical planes A.= const near ~ = 0 are shown re­
spectively in Figs. 4 and 5. It should be noted that 
if the amplitude If(~, A.) 12 ( cf. (2. 23)) I b I » a and 
I b I » 1, then the sign of the extrema will agree 
with the sign of b. 

An example of a virtual reaction with ~ 0 < 0 is 
the process of inelastic scattering with "quench­
ing" of excitation, i.e., the case when the virtual 
particle B'(y') is an excited state of the final nu­
cleus B(y). 

From the above discussion it follows that the 
possibility of identifying the mechanism of reac­
tion (1) and, in particular, the elucidation of the 
role played by the final state interaction by means 
of an experimental investigation of the moving 
logarithmic and square-root branch points of the 
amplitude corresponding to the diagram of Fig. 1 
appears to be quite real for a sufficiently high en­
ergy of the incident particles (of the order of sev­
eral tens of MeV in the center of mass system for 
the reaction). 

In conclusion we note the relation between the 
approximations utilized in the present paper and 
the well known results ofWatson[Sl and Migdal[ 91 

based on taking the final state interaction into ac­
count. As has been noted earlier (Sec. 2) our basic 
assumption was the nearness to the singularity and 
the relatively slow variation at that point of the 
amplitudes of the virtual processes. In contrast to 
this, Watson and Migdal consider the case when 
the dependence of the amplitude on the kinematic 
variables due to the mechanism of the reaction it­
self is weak compared to the variation in the ampli-
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Imt;, 

-as 0 Q5~ 

FIG. 4. The shape of the curves 
corresponding to the vertical sec­
tions of the surface Im f/1,.(~, ..\) by the 
planes ..\ = const near the square root 
singularity ~ = 0. 

tude of virtual scattering as a function of w. One 
can give examples of processes in which depend­
ences of both these types are significant-such an 
example is the reaction p + d - 2p + n which is as 
yet the only example of a sufficiently complete ex­
perimental study of the surface a2a ;a~ a A. [ 101 (the 
amplitude of p-n scattering turns out in this case 
to be a noticeably varying function for small val­
ues of w due to the presence of a virtual singlet 
pole). A theoretical analysis can also be carried 
out for this reaction-the corresponding triangu­
lar diagram has been evaluated by Komarov and 
Popova. [ 111 

The domain of applicability of the results ob­
tained above is limited, firstly, by the assumption 
regarding the approximate constancy of the ampli­
tudes of the virtual processes and, secondly, by 
the neglect of the Coulomb interaction if both final 
particles are charged. The latter can primarily 
affect the behavior near the threshold singularity, 
but can be easily taken into account in that case. 
Concerning the variation of the amplitudes of vir­
tual processes one can say that except for individ­
ual reactions of the type of the break-up of a deu­
teron by nucleons mentioned above it is difficult to 
obtain reliable theoretical estimates since we are 
dealing with the behavior of amplitudes in nonphys­
ical regions. This question can be elucidated only 
by a comparison of experimental data with theo­
retical results obtained on the assumption that the 
virtual amplitudes are constant near the singulari­
ties of the diagram. 

Finally, we note that the results obtained in this 
paper can be generalized to reactions involving the 

FIG. 5. The shape of the curves 
corresponding to the vertical sec­
tions of the surface Re f/1,. by the 
planes ..\ = const. 

0 z 3 ~ 

production of three particles of arbitrary type, i.e., 
processes A + x - B + y + z. 

The authors express their gratitude to E. Bara­
nova for her aid with numerical computations. 
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