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Analytic expressions are obtained which allow one to estimate the effect of a periodic lattice 
potential on the concentration of conduction electrons as determined by optical methods, Nopt• 
and also on the magnitude of the Fermi surface SF and the electron state density on the Fermi 
surface YF· The expressions apply to cubic nontransition multivalent metals. The calculation 
is performed to first-order terms with respect to IVgi/EF where Vg is the Fourier component 
of the pseudopotential and EF is the electron energy on the Fermi surface. The formulas are 
employed to determine N0 pt for lead and aluminum. The considered effect leads to a much 
smaller value of N0 pt than that of Nval (Nval is the concentration of valence electrons). How­
ever, it does not completely explain the difference Nval- Nopt observed experimentally. 

FOR multivalent nontransition metals, such as ties of multivalent nontransition metals. This is 
aluminum, lead, and tin, there is a large discrep- the purpose of this paper. At the same time, we 
ancy between the concentration of conduction elec- estimate the effect of the lattice on the total Fermi 
trons N0 pt determined by the optical method and surface SF and on the density of states on the 
the concentration of valence electrons Nval· For Fermi surface YF· 
these metals Nopt is close to one electron per 
atom, which is several times less than Nval· At 
the same time, for the same metals in the liquid 
or amorphous state Nopt is approximately equal to 
Nval· This fact has already been considered in [i J 
where the question of the possible effect of Fermi­
liquid effects on Nopt has been discussed. It was 
noted that the interelectron interactions effect Nopt 
differently in the case of the crystalline and liquid 
or amorphous state. One can therefore expect that 
Fermi-liquid effects can at least partly explain the 
observed difference between Nopt and Nval· In[i) 
it was assumed that the Fourier components of the 
pseudopotential for the above metals are so small 
that they cannot explain the discrepancy between 
N0 pt and Nval· At the same time, it was empha­
sized in [1] that it is still necessary to refine from 
experimental data the actual value of Nopt obtained 
without allowance for interelectron interaction. 

Using results pertaining to the van Alphen-de 
Haas effect, it has recently been possible to deter­
mine the Fourier components of the pseudopotential 
for lead. [2 J These turned out to be rather large. 
One should, therefore, estimate first the effect of 
the periodic lattice potential on the optical proper-

1. CUBIC MULTIVALENT METALS 

A. Let us consider the cubic lattice. As is well 
known, l3J in this case optical measurement of the 
complex index of refraction in the infrared region 
make it possible to determine the quantity 

( 1) 

Here m is the mass of a free electron, VF is the 
electron velocity on the Fermi surface, and dSF is 
an element of the Fermi surface in momentum 
space. We must, therefore, estimate the effect of 
the periodic lattice potential on the quantity 

( 1 ') 

B. We use the pseudopotential method. [4, 5] We 
expand the pseudopotential in a Fourier series: 

V (r) = ~ Vg exp (2:rtigr). (2) 
g 

The summation is over all the reciprocal lattice 
vectors g. Assuming that IV gl « E F (E F is the 
Fermi energy), we use the weak-coupling method. 
In the calculation we shall take into account only 
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first-order terms in the small parameter IV gi/EF. 
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In this approximation each component of the pseudo-
potential V g yields an independent contribution and 
is effective only in the vicinity of the corresponding 
Bragg plane. 

Let us consider the effect of one component of 
V g· We shall use the extended-zone scheme. We 
denote the distance from the center of the zone r 
to the corresponding Bragg plane by Pg· We split 
the electron momentum into components-parallel 
and perpendicular to the Bragg plane: p 11 and p 1· 
The electron energy will be 

E(p) = P112 + p1_2 - 2(pj_ --- pg)pg 

± [4(pj_-pg)2pg2+ jVgj2]'h. (3) 

We have, for simplicity, chosen a system of units 
for which 2m= 1, where m is the free electron 
mass. We introduce no other mass, except that of 
the free electron. On the Bragg plane p l- Pg = 0 
and the electron energy is 

E=Eo± jVg j. (4) 

Here E0 is the energy of the free electron. 
For convenience we introduce the dimensionless 

quantities (see the figure): 

w = E (~) ' £ = I v ~I ' X = p j_ - Pg ' y = ElL . ( 5) 
Pg Pg Pg Pg 

In terms of these variables the equal-energy sur­
face will be of the following form 

w = y2 + x2 + 1 +sign (x)l'4x2 + £2• (6) 

The Bragg plane changes the velocity component 
of the electron perpendicular to this plane. In 
terms of our variables we shall have the following 
expressions for the electron velocity: 

vu = 2pg y, 

Vj_ = 2pg [x +sign (x) ·2x I l'4x2 + £2], 

' [ £2 . £2 ] 
= 4pl\ w 4x2 + £2- sign (x) f 4x2 + £2 . (7) 

The presence of a Bragg plane leads also to a 
change in the shape of the Fermi surface. The fig­
ure shows the initial free-electron sphere and the 
changes in it due to the presence of one Bragg 
plane. The radius of the free-electron sphere is 
given by the expression 

PFo = 2nli (~ .6n )1i3. 
8n .6-r 

(8) 

Here LID. is the number of valence electrons con-
tained in a volume t::,.r. 

The Fermi surface near 
the region of intersection of 
the Bragg plane OM with the 

P.' F 

free-electron sphere. The f Pg 
"'----------"--------1:;-----------j-=----I plane of the diagram is per- -1 x9 

pendicular to the Bragg plane 
and passes through the cen-
ter of the sphere r. 

Assuming that the Bragg plane intersects the 
free-electron sphere, we find that the Fermi sur­
face will be a surface of revolution with an axis 
passing through the center of a sphere r perpen­
dicular to the Bragg plane. The area element of the 
Fermi surface is, as can be readily shown, 

dSF = 2:npg 2y(x) [1 + (dy(x) I dx) 2 ]'hdx = npg VF(x)dx. 

(9) 

The cited relations (7) and (9) allow us to calcu­
late readily the integral characteristics of the 
Fermi surface. 1> We confine ourselves to first­
order terms in ~. It should, however, be borne in 
mind that the distance to the Bragg plane p can be 
close to the Fermi momentum for free electrons 
p~ = (E~) 1 12, i.e., xg = (p~- Pg)/Pg « 1. The ratio 

Uxg will therefore be assumed to be arbitrary. 
We also note that in the expression for v(x) the 
term containing sign(x) leads, as can be readily 
shown, to small corrections of the order of ~ 2 ln ~ 
and can therefore be discarded. 

C. Let us consider the effect of a periodic 
potential on the optical electron concentration N0 pt· 
It was already noted above that 

Obviously, 

The superscript 0 refers to free electrons. In our 
units S~v~ = 47r(p~) 22p~. 

Using (7) and (9) one readily obtains 

l'>Jt is easy to show that a change in the volume of momen­
tum space enclosed within the Fermi surface is given by 
quantities of second-order in smallness and it can be assumed 
that far from a Bragg plane the Fermi surface is a sphere of 
radius P'i.- and that EF ~ E'i.-. 
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(10) 

'P = arc tg 2 (pg/PF0 ) (1- Pg/PF0 ) 

g (jVgi/EF0 ) 
(11) * 

Summation is over all Bragg planes intersecting 
the free-electron sphere. We note that for 

(PF0 - pg) I Pg ~ 112 (I v g I I EF0 ) (PF0 I pg)2 

we get 1/2 + cpg/rr ~ 1. 
D. Let us consider the effect of a periodic po­

tential on the area of the Fermi surface. Using the 
same expressions (7) and (9), we obtain 

(12) 
where 

f(z) = : E(z)- (: - z) K(z), 

f(z, 'Jl) = _!_E (z, ~- 'P)- (__!_- z lp ( z ~ _ qJ \ 
z 2 z ) \'2 ) 

1 
- ;--- [ 1 - ( 1 - z2 cos2 'P) '12] tg 'Jl, 

,p 

E ( z, 'ljJ) = ~ dB ( 1 - z2 sin2 B) •;,, 

,p dB 
F(z, '¢)= \ ____ _ 

~ ( 1 - z2 sin2 B) 'i, ' 

( n \ E(z) == E z, -- J, 
2 ' 

(13)t 

Here F(z, 1/J) and E(z, 1/J) are elliptic integrals of 
the first and second kind respectively (see, for ex­
ample,r6J). We note that for xg »~.i.e., when 

we have 

- ( Pg ) Pg ~ 1 jVg I 1 
f PF0 ' 'Pg ~ PF0 4xg =4 EF0 1-Pg/PF0 . ( 13') 

and the formula is thus appreciably simplified. 

E. Let us consider the effect of a periodic po­
tential on the density of states on the Fermi surface 

*arc tg = tan_,. 

ttg = tan 

It follows from (9) that dSF/vF = rrpgdx· The limits 
of integration also do not depend on ~. Consequently, 
in the approximation under consideration, which is 
linear in IV gi/E~, the periodic lattice potential 
does not alter the density of states of electrons on 
the Fermi surface: 

( 14) 

F. Utilizing Eqs. (10)-(13) one can estimate the 
effect of a periodic lattice potential on Nopt and SF. 
Equations (12)-(14) are also applicable to non­
cubic crystals. Equations ( 1 0) -( 11) yield the 
change of the quantity ( 1') also for an arbitrary 
crystal lattice. However, for noncubic symmetry 
there is no simple relationship between { N0 pJ ij 
and ( 1 '). Nevertheless it can be approximately 
assumed that for polycrystalline samples the aver­
age value of Nopt will be given by (1 '). 

The accuracy of the obtained expressions for 
(Nval- N0 pt)/Nval and (S~- SF)/S~ is determined 

by the average quantity IV gi/E~. Owing to the fact 
that we have neglected second-order quantities, it 
is to be expected that the relative error will be of 
the order of IVgi/E~. 

Below we compare the results obtained from the 
equations of this paper with the experimental re­
sults obtained in[7-s], and also with the results of 
more accurate calculations by Anderson and Gold. [2 J 

2. TRI- AND TETRAVALENT METALS WITH A 
CUBIC FACE-CENTERED LATTICE 

A. Let us apply the obtained formulas to a face­
centered cubic lattice. For this type of lattice the 
only important Fourier components are V 111 and 
V200 (cf. [2, to]). The corresponding Bragg planes 
pass at the following distances from the zone cen­
ter r: 

2nh 13 
PHt=-­

a 2 ' 
2rrh 

P2oo=-. 
a 

Here a is the lattice constant. 

( 15) 

In calculating the sums in ( 10) and ( 12) one must 
take into account the fact that eight { 111} and six 
{ 200} planes intersect the free-electron sphere. 

B. Let us consider a tetravalent metal. The vol­
ume t:.T = a 3 contains 16 valence electrons. Using 
(8), we obtain 

pF0 1 (2nn I a) = 1.241. (16) 

As a result, in accordance with (10), 
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N val - N opt = 4_40 ~ (_.!_ + qlHt ) 

Nopt EF0 2 :rt 

+ 3_80 _I V2oo I ( _!_ + ql2oo \ , 
EF0 2 :rt ) 

0.420 0.313 
qltu = arctg ( !Vud IE Fo) ' IJ'2oo = arctg <I V 200 I/ E FO) 

(17) 
Let us apply this formula to lead. According 

to[2J for lead IV1111/E~ = 11.9 x 10-2, and IV200 jjE0 
= 5.5 x 10-2. This yields F 

(Nval- Nopt~ I Nval = 0,674. 

Hence N0 pt = 1.30 electrons per atom. Experi­
ment[1J yields for lead Nopt = 1.12 ± 0.04 electrons 
per atom2>. One can consider these values to coin­
cide. 

Thus the large observed difference between 
N0 pt and Nval in lead is basically connected with 
the effect of the periodic lattice potential which is 
in this case rather large. 

Let us calculate the area of the Fermi surface 
of lead. Assuming that condition (13') is fulfilled 
(the error in assuming this is :S 3%), we obtain 
(S~- SF)/S~ = 0.410. An accurate calculation 
carried out by solving a fourth-order secular equa­
tion[2J yields (S~- SF)/S~ = 0.411. Thus, the re­
sults of both calculations coincide. 

The total area of the Fermi surface has been 
determined experimentally[tt] from measurements 
of surface conductivity in the case of the anomalous 
skin effect. The value obtained was (S~- SF)/S~ 
= 0.45 ± 0. 05 which is in good agreement with the 
calculation. 

C. Let us consider a trivalent metal. In this 
case the volume ll.T = a 3 contains 12 valence elec­
trons. In accordance with (8) we obtain 

PF0 i (2n1i I a) = 1,126. (18) 

As a result, according to (10), 

N val- N opt = 4 84 I v1H I ( ~ + qlut) 

N~ ' E~ 2 :rt 

0,355 
qlm = arctg (I Vuti!EFD) 

0.1.99 
qJ2oo=arctg (IV200 I/EFO) 

The Fourier components of the potential for 
aluminum are[toJ: IV111 I/E~ = 2.09 x 10-2, 
IV200 I/E~ = 6.57 x 10-2. Using these values, we 

(19) 

2 >we cite the value of Nopt obtained at T = 4.2°K, since 
the values of the potential refer to a temperature of this order. 

obtain (Nval- Nopt)/Nval = 0.346, whence Nopt 
= 1.96 electrons per atom. Experiment yields for 
evaporated and unannealed films of aluminum [B J 
N0 pt = 1.33 ± 0.06 electrons per atom, and for 
sputtered and annealed films[9 J Nopt = 1.12 ± 0.07 
electrons per atom. There is no agreement, al­
though a considerable part of the difference be­
tween N0 pt and Nval can be explained as being due 
to the periodic lattice potential. 

Calculations of the area of the Fermi surface 
carried out with Eqs. (12) and (13) yield 
(S~- SF)/S~ = 0.215. Unfortunately, we cannot 
compare our results with the more accurate cal­
culation of Ashcroft,(1°J since he did not calculate 
the integral characteristics which interest us. 

3. CONCLUSION 

The obtained expressions which take into ac­
count the effect of the periodic lattice potential on 
the concentration of conduction electrons deter­
mined by the optical method, as well as on the area 
of the Fermi surface and on the density of states on 
the Fermi surface, make it possible to determine 
these quantities if the Fourier components of the 
pseudo-potential are known. At present, the latter 
are obtained experimentally from the results of 
measurements of the van Alphen-de Haas effect. 
We assume that the required Fourier components 
can also be obtained as a result of analyzing the 
results of optical measurements in the visible and 
infrared regions of the spectrum. However, the 
corresponding analysis of the experimental results 
has so far not been carried out. 

The effect under consideration leads even with­
out account of the interelectron interaction to an 
appreciable difference between N0 t and Nval for 
nontransition multivalent metals. ~he presence of 
a periodic potential leads to the inequality 
N0 pt < Nval· However, for aluminum and with 
allowance for the action of the lattice, experiment 
yields a smaller value for N0 pt than the calculated 
value. The reason for this discrepancy requires 
further study. It is quite possible that it is essen­
tially related with the effect of the electron-elec­
tron interaction discussed in [1 J. 
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