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The deceleration of a rectilinearly moving dislocation in a crystal with impurity atoms is 
analyzed macroscopically. In the macroscopic approach the decelerating force of the moving 
dislocation is directly expressed in terms of the dispersion of the crystal elastic moduli, and 
therefore the dispersion of the elastic moduli due to the changes which the impurities intro
duce in the crystal-lattice dynamics is analyzed in detail. The dependence of the dislocation 
decelerating force f on the dislocation velocity V in a crystal with impurities is studied and 
it is pointed out that the curve f = f(V) may be strongly nonmonotonic if the impurities result 
in the appearance of quasilocal oscillations. The dislocation velocity corresponding to the 
peak on the f(V) curve is determined by the quasi-local oscillation frequency. Slowing down 
of dislocations by diffusion of impurity atoms in its elastic field is also considered. The rela
tive contributions of each of the dissipative mechanisms to the dislocation decelerating force 
are estimated. 

INTRODUCTION 

THE motion of a dislocation in a crystal is always 
accompanied by deceleration due to various phys
ical processes whereby the dislocation energy is 
dissipated, and is determined by the real structure 
of the material. In this paper we analyze the de
celeration of dislocations due to the presence of 
impurities in the crystal. A separate examination 
of this cause of dislocation deceleration is· believed 
to be of interest in connection with the fact that its 
contribution depends on the impurity concentration, 
and can consequently be easily controlled. 

The main mechanism of dislocation-energy dis
sipation in a crystal with impurities can be des
cribed macroscopically in terms of the elastic
modulus dispersion caused by the impurities and 
leading to the damping of elastic waves in such a 
crystal. A general calculation scheme for the 
corresponding resistance force, within the frame
work of elasticity theory, was indicated in an 
earlier paper by the authors [l J, where this force 
was directly expressed in terms of the dispersion 
of the elastic moduli. We start from the final 
formulas of that paper. 

It must be borne in mind that a macroscopic 
consideration does not take into account the de
celeration produced by impurities in the glide plane 

of the dislocations as they interact directly with the 
nucleus of the dislocation [2 J. This mechanism of 
action of impurities on the dislocation will not be 
discussed. 

The dispersion of the elastic moduli of a crystal 
with impurities is caused by two circumstances. 
First, the impurity introduces appreciable changes 
in the dynamics of the crystal lattice; in particular, 
it noticeably deforms the spectrum of the lattice
vibration frequencies. Under certain conditions the 
rearrangement of the spectrum may affect the low 
frequency region of interest to us [3-- 5], correspond
ing to long-wave vibrations of the crystal 1l. In 
Sec. 1 of this article we obtain the dispersion of 
the long-wave oscillations of the crystal with inter
stitial impurities, and in Sec. 2 we discuss the 
dispersion-induced frequency dependence of the 
elastic moduli of the crystal. We analyze in detail 
the dependence of the elastic moduli on the fre
quency in the presence of the quasi-local oscilla
tions that are connected with an interstitial impur
ity. The model used by us for the interstitial im
purity allows us to carry out this investigation quite 

1 )The dynamics of crystal lattice with impurities has by 
now been extensively discussed, so that we refer only to 
papers whose results will be directly used in our article. 
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illustratively and simply. In Sec. 3 we discuss the 
dependence of the deceleration force on the disloca
tion velocity and call attention to the nonmonotonic 
character of this dependence. The decelerating 
force has a sharply pronounced maximum at a 
velocity V ~ awimp• where a is the lattice constant 
and Wimp is the frequency of the quasi-local os
cillation. 

We note that an attempt to calculate the deceler
ating force of a moving dislocation by impurities 
was made earlier by Takamura and Morimoto[«), 
but the method investigated there and the results 
obtained there seem unsatisfactory to us. 

The second cause of dispersion of elastic moduli 
and additional elastic-wave absorption is the im
purity diffusion which arises in an inhomogeneous 
stress field. The resistance force due to this 
cause is analyzed in Sec. 4, where it is shown that 
at the dislocation velocities of interest to us it is 
proportional to the impurity diffusion coefficient. 
To avoid misunderstandings, we explain that the 
dislocation is assumed to move so rapidly, that 
there is no time for a quasistatic impurity cloud to 
be produced around it. In the other limiting case, 
considered by Cottrell et al. [7] , an inverse depen
dence of the decelerating force on the diffusion co
efficient of the impurity will be obtained. 

The decelerating force due to the impurity dif
fusion is linearly connected with the dislocation 
velocity V and at low temperatures it becomes ap
preciable only at very low velocities. 

1. ELASTIC WAVES IN A CRYSTAL WITH INTER
STITIAL IMPURITIES 

We consider a disordered solid solution of low 
concentration c (c « 1), produced by interstitial 
impurities in a regular crystal lattice. Let m be 
the mass of the crystal atom and M the mass of the 
impurity atom. We denote by x(r) the amplitude of 
the displacement of the lattice atom with coordin
ate r, where rare integer vectors of the ideal
lattice points, and by 1/Jj the displacement amplitude 
of an impurity atom occupying an interstice with 
coordinate Rj. Then, in the harmonic approxima
tion, the monochromatic oscillations (of frequency 
w) of a lattice with impurities are described by the 
following system of equations: 

w2:xi(r)- ~ Lil, (r- r'):x~t (r') 
r' 

j, r' 
(1) 

2 <J> 2 <i> m ~ A ( ' R ) ( ') w ¢; - Wik '¢11. = M LJ ik r - .i X~< r , 
r' 

(2) 

where Lik is the matrix of elastic constants of the 
ideal lattice, w~k the matrix of the elastic coupling 
of the impurity atom with the lattice, and the ma
trices Uik and Aik describe the corresponding per
turbations of the elastic constants2>. Repeated in
dices imply summation throughout. 

The matrices Uik' wik• and Aik satisfy the ob
vious relations 

~ U;~t(r- R;, r'- R;) + Ai~t(r- R;) = 0, 
r' 

m 
w;11.2 + M ~ Ai~t(r- Ri) = 0. (3) 

r 

With the aid of (2) we can eliminate from (1) the 
amplitudes of the impurity atoms 1/J and reduce ( 1) 
to the form [a) 

w2:xi(r)- ~ Lil,(r ~ r'):x~t(r') 
r' 

(4) 
j, r' 

where 

3 

+ : A;n (s) Az~t (s') ~zn ( w2) { II ( w2 - w,.2 ), ( 5) 
a~1 

~in(w 2) are the cofactors of the elements of the de
terminant Det lw 2oin- w~nl, and w; are the roots 

of the equation Det lw 2oin- winl = 0 and have the 

meaning of "bare" natural frequencies of the im
purity atom in the lattice. 

Equation (4) together with relations (3) now de
termines only the amplitudes of the oscillations of 
the lattice atoms, and the perturbations of the lat
tice oscillations by the impurities are completely 
described by the matrix Aik· Further analysis of 
( 4) calls for knowledge of the explicit coordinate 
dependence of the matrix Aik· Being interested in 
the qualitative aspect of the problem, we shall at
tempt to cast this matrix in a relatively simple 
form. As already noted in the introduction, we are 
interested in the singularities introduced by the 
impurities in the long-wave deformations of the 
crystal, relative to which the crystal can be re
garded as a continuous medium, and the impurities 
and the perturbations caused by them can be re
garded as pointlike. 

2 )Equations (1) and (2) are an obvious generalization of 
the equations considered in [4]. However, the mass ratio M/m 
was erroneously omitted from the right side of (2)in [4 ] so that 
the results of [4] pertain only to the case M = m. 
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In addition, wishing to obtain the results in 
closed form, we must recognize that the scattering 
of elastic waves and the deceleration of the dislo
cations are described by relatively simple formulas 
only in the isotropic approximation. Therefore it 
is reasonable to confine ourselves henceforth to 
the simplest crystal model, namely a continuous 
isotropic medium. This makes it possible to sim
plify to the utmost all the equations, retaining at 
the same time the essential features of the phenom
ena under consideration. 

In this approximation, the coordinates r of the 
lattice atoms can be assumed to run through a con
tinuous set of values, and the matrix Uik is natur
ally chosen in the form 

( 6) 

where o(~) is a a-function, oik is the Kronecker 
symbol, and v0 is the volume per unit cell of the 
crystal lattice and has the meaning of a normaliza
tion constant. Then the relations between the force 
constants go over into 

(7) 

where w0 is the "bare" natural frequency of the 
impurity (wik = w~oiiJ, which is unique in the iso
tropic model, and for the matrix Aik we obtain as 
a result of the simplifications the following expres
sion: 

Gin"'(r)= ( 2~) 3 ~ dkgin(w 2 +iO,k)eikr, 

gin(w2,k)= ~ G;n"'(r)e-ikr. 

From (10) we get the following dispersion equa
tion for the vibrations of a crystal with interstitial 
impurities: 

Det l6in + Ao(w2)G;n"'(0) + cAo(w2)gin(W2, k) I= 0.(11) 

As is well known, the tensors gin(w 2, k) and 
G~ (0) in the general anisotropic case can be reprem 
sented in the form 

( 12) 

G; n"' ( 0) = ~ .[ C n~"':, ( z L dz + i n rf~~ ( {I)) J , 
~ z2- {1)2 2 w 

0:=1 

~ 
(a:) (a:) ' 

!"l ( ) _ Vo dS ei (k)en (k) nw z --- k 
(2rt)3 "'a(k)=z I V k Wa: (k) I 

( 13) 

here e(a)(k) is the unit polarization vector, wa(k) 
the dispersion law (a is the number of the branch 
of the acoustic spectrum of the ideal crystal) , and 
the integral with respect to z is taken in the sense 
of principal value. 

On going over to an isotropic medium, the 
second-rank tensor nin(w) should go over into a 
scalar 

Vo ~ 1 
(8) n;n(w) = 1/ 3v(w)6i,, v(w) = (Zrt) 3 J' dSk l V w (k) I 

tu(k)=w k 

A general method for the analysis of equations 
with a perturbation potential of the type ( 6) was 
developed by I. M. Lifshitz[3]. Following this 
method, we put in (4) r = Rj and, using the Green's 
tensor Gfn(r) for the equation of the stationary os
cillations of the ideal lattice, we rewrite ( 4) in the 
form 

{6in + Ao( w2)Gin"'(0)Jxn(Rj) 

= -Ao(w2) ~ Gin"'(Ri-Ri')xn(Ri')· 
j'oj=j 

( 9) 

For elastic.oscillations whose wavelengths greatly 
exceed the average distance between impurities, 
we can speak of waves that are plane ''in the 
mean,'' putting x(R) = Xo exp (ik · R), where Xo is the 
wave amplitude averaged over the impurities[3J. 
Averaging of (9) over the impurities yields in the 
first approximation in the concentration c 

[~in+ Ao ( w2) Gin"' (0) + cAo( w2) gin (·w2, k) Jx~) = 0, ( 10) 
' 

where gin(w 2, k) denotes the Fourier transform of 
the Green's function Gfn(r): 

where v(w) is the frequency density of the corre
sponding branch of the spectrum (at low frequen
cies v(w) = v 0w2j21r2s 3, where sis the speed of 
sound) . This quantity determines the imaginary 
part of the tensor Grn(O) in the isotropic case. To 
calculate the real part of the tensor G~(O) in the 
first nonvanishing approximation in the small 
parameter w/wn (wn is the Debye frequency) we 
can put w = 0 in the denominator of the integrand 
of expression (13) for Gi'it(O). This greatly simpli
fies (13): 

3 
1 _ 1 ~ (" va:(z) 

Q12 -18 Li J --;z dz, 
0:=1 

where s z and st are respectively the velocities of 
the longitudinal and transverse sound waves in an 
ideal crystal, and obviously Q1 ~ Q2 ~ wD. 

The tensor gin(w 2, k) has in the same approxi
mation the form 
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(15) 

When (14) and (15) are substituted in (11), the 
latter reduces to two equations of the type 

s2k2= w2- cAo(w2) (16) 
1 + 3Qt-2Ao(w2) (1 + iw/Q2) ' 

one of which determines the dispersion law for 
longitudinal waves (s = s z) and the other for trans
verse waves (s = st) in a crystal with interstitial 
impurities. The fact that the presence of impuri
ties does not lead to "entanglement" of the longi
tudinal and transverse waves in the crystal is the 
consequence of the isotropy of the perturbation
potential model (6) chosen by us. 

For further analysis it is convenient to intro
duce in place of the parameters c, w 0, m/M, 0 1, 

and 0 2 the new parameters 

M 
e=c-·, 

m 
( M w 2 )-'/• 

Wimp = Wo \ 1 + 3 -- Q0
2 , 

\ m 1 1 

and, using (7), rewrite (16) in the form 

s2k2 = w2 [cp1 (~ ) + icp2( ~ )] , 
<.01mp- 001mp 

(17) 

e(1- x2) e~x3 

cp1(x) = 1 + (1- x2)2 + ~2x6' cp2(x) = (1- x2)Z + ~2x6 
(18) 

The frequency wimp has the meaning of a renorm
alized natural frequency of the impurity atom. 

Let us stop to discuss the limitations under 
which (18) is valid. As already noted above, the 
length of the elastic wave i\. should be much lar~er 
than the mean distance between impurities ac-1 3 

(a = lattice parameter). In the presence of disper
sion in the isotropic medium, the wavelength i\.(w) 
is given by the formula i\.(w) = 27r/Re{k(w)}, where 
k(w) is the wave-vector value obtained from (18). 
Therefore this condition is expressed by the fol
lowing inequality: 

a(2:n:)-1Re{k(w)} ~ c't.. (19) 

In the absence of dispersion, (19) is replaced by 
wfwD « ct/3. 

We note that for substitutional impurities, a 
dispersion equation similar to (16) and (18) was ob
tained by a somewhat different method by Slutskin 
and Sergeeva[S] with a more general perturbation
potential form than used in our case. 

2. DISPERSION OF ELASTIC MODULI 

In final analysis we are interested in the de
celeration of a linear dislocation moving in a crys-

tal with constant of velocity V (V « s). In the iso
tropic approximation, this force per unit disloca
tion length is equal to[t] 

2b 21laV ( ) 

f(V)=-v1 S Im{J.t(oo) [1-~]}dw 
n 0 cr(w) 

b 2 koV 

+ 31~ ~ Im {J.t(oo)} dw. 
0 

(20) 

Here f.J.(w) is the complex shear modulus and a(w) 
is a combination of elastic moduli, which enters 
into the definition of the longitudinal speed of sound 
in the absence of dispersion (if i\. and f.1. are Lame 
coefficients, then a = i\. + 2 f.J.) 3>; b 1 and b2 denote 
respectively the edge and screw components of the 
Burgers dislocation vector; k0 is a certain" cut
off'' parameter for the integration limits, with 
magnitude of the order of the reciprocal lattice 
constant (koa_ ~ k 0b ~ 1). The appearance of the 
parameter k 0 is connected with the need of elimin
ating from consideration deformations in the nu
cleus of the dislocation, since these cannot be 
described within the framework of the continual 
theory[t]. 

Thus, the value of the decelerating force is de
termined completely by the dispersion of the elas
tic moduli. The explicit form obtained by us for 
the dependence of the wave vector on the frequency 
(18) enables us to investigate in detail the modulus 
dispersion due to the impurities. 

Using the definition of a(w) and f.J.(w) in (18), we 
obtain 

a( 00 ) = psr cpi( oo/wimp)- icpz( w/ wimp) 
cpt2( w/ Wimp)+ cpz2( w/ Wimp) 

'-'-('"')= 2 cpt(W/Wimp0-i!Jlz(W/Wimp) (21) 
r "' PSt --

qlt2 ( w/ Wimp)+ (JJ22( w/ WimJ 

where pis the density of the medium, and there
maining notation is the same as in Sec. 1. 

Inasmuch as the upper limit of integration in 
(20) is finite, the relation f = f(V) will be deter
mined by the behavior of the corresponding inte
grands in the frequency interval ( 0, k0 V). Conse
quently, we must ascertain under what conditions 
do the singularities of the imaginary parts of the 
elastic moduli appear in this interval. In addition, 
it must be remembered that the dispersion law (18) 
was derived under certain limitations, so that we 
must know the frequency interval in which the 
formulas in (21) become meaningless. 

3>we introduce the symbol a(w) in order to avoid confusion, 
since in this text .-\(w) denotes throughout the length of the 
elastic wave corresponding to the frequency w. 
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We shall show first that the frequency interval 
in which (21) may be incorrect is very small. We 
shall also verify later that this interval was outside 
the region of frequencies in which the most essen
tial change in the integrands of (20) occurs. 

If the dispersion is small, then A. ~ s/w and the 
inequality (19) reduces to the simple condition 

w / Wn < c'h, c ~ 1. (22) 

However, in the presence of quasi-local oscilla
tions in the crystal, the dispersion of the elastic 
waves has a resonant character[4• 5J, and then an 
interpretation of inequalities (19) calls for a de
tailed analysis of the dispersion equation. In the 
case of substitution impurities, a detailed analysis 
of this type was carried out in [ 5] • All the qualita
tive singularities of the dispersion of elastic waves, 
noted in that paper, appear also in the case of in
terstitial impurities, so that we confine ourselves 
to a simple listing of these singularities, and indi
cate their connection with the parameters of the 
impurity model assumed by us. 

The singularities in the propagation of elastic 
waves in a crystal with impurities appear in the 
vicinity of the quasi-local frequency[4, 5J. For 
interstitial impurities, the role of the quasi-local 
frequency is played by the renormalized natural 
frequency wimp of the impurity atoms, if this fre
quency lies in the low-frequency end of the spec
trum. We put wimp« wn and assume that (22) is 
satisfied for all the frequencies in question, so that 
the inequality 

(23) 

is certainly satisfied. The wavelength dispersion 
A.(w) = 27r/Re{k(w)} and of the wave damping coeffi
cient y(w) = Im{k(w)} are shown for these condi
tions in Fig. (a) (all the plots in our figure are in 
an arbitrary scale and are schematic oniy). Curve 
I shows the frequency dependence of the damping 
coefficient: 

a 

and curve II the frequency dependence of the wave
length: 

The plots show the dimensionless quantities 
sy(w)/wimp and wA.(w)/27rs. 

We see that at very low frequencies (w « Wimp) 
usual Rayleigh scattering of the elastic wave by 
the impurities takes place, leading to small dis
persion: 

1 e~ 
Y( u))- w4 

- -2-.- 3 ( 1 + ) '/z ' sw,mP' e 

However, in a narrow region of frequencies 
ow ~wimpc 113(M/m)(wimp/wn) 2 near the quasi
local frequency wimp• the damping coefficient 
increases in resonant fashion (sy(w)/wimp » 1), 
and the wavelength becomes very small 
(wA.(w)/27rs « 1). In the figure, the points x = x 1 

and x = x 2 correspond to those frequencies at which 
A.(w) = ac-1/ 3, and therefore the requirement (19) 
is certainly satisfied inside the interval (x 1, x 2). 

The latter circumstance makes Eq. (18) and on all 
the formulas that follow from it doubtful. Accord
ingly, the corresponding sections of the curve are 
shown dashed. Bearing in mind condition (23), we 
can conclude that ow « wimpcM/m. Inasmuch as 
it is natural to assume that at low impurity con
centrations the total mass of the impurity atoms 
is smaller than the mass of the initial crystal 
(cM/m < 1), we have ow « wimp• that is, the dis
cussed frequency interval is much smaller than the 
magnitude of the quasi-local frequency. 

Directly adjacent to the region of resonant damp
ing of the elastic waves is a frequency interval of 
width w = Wimp(x4 - 1) ~ WimpcM/m, in which 
the characteristic attenuation length of the elastic 
wave becomes smaller than its wavelength: 

Dependence on the dimensionless frequency 
x = w/wimp of the following quantities: !-the dimen
sionless damping coefficient sy(w)/ Wimp; 11-the di
mensionless wavelength wA(w)/2rrs; III-y(w)A(w)/2rr; 
IV -dimensionless imaginary part of the elastic moduli 
F(w/wimp) = -p-'st- 2 lm!l(w) = -p-'s(' Im a(w). The 
quantities x., x2 , x,, and x4 are equal to: 

X1 = 1 - c'hMrn-l (<•limp / (•l ,,) 2 , 

.r::_ :.= 1 + c 1/9JI,fm-- 1 ;·(·limp/ (1J 1 ,)~h, 

x, = (i ,- 1/2cill / rn)'f,, x, = (1 + c;.! / m)'/, 
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A.(w)y(w) > 27!" (the point x = x 4 is determined by the 
condition A.(w )y(w) = 27!". A plot of the function 
A.(w)y(w)/2ir is shown in Fig. (b) (curve Ill). We 
note first that all our formulas remain in force in 
the frequency interval 6.w. Indeed, the condition 
A.(w)y(w) > 27!" is due essentially to the anomalous 
increase in the wavelength (at the point w = wimpX3 

the function wA.(w)/27rs is maximal and its order of 
magnitude is E/{3 ~c(wD/wimp) 3 » 1), so that the 

inequality (19) is certainly satisfied in this region. 
The damping coefficient y(w) in the interval 6.w 

is not very large, but when A.(w)y(w) > 27!", the crys
tal becomes "opaque" to the elastic waves. In this 
frequency interval, the reflection coefficient of the 
elastic waves from the crystal with impurities is 
practically equal to unity 4>. The occurrence of a 
crystal "opacity" band, due to the impurities with 
quasi-local oscillations, was predicted in [4]. How
ever, the estimate given there for the width of the 
interval 6.w pertains to the case M = m. The de
pendence of 6.w on M/m was discussed in the paper 
by Slutskin and Sergeeva[5]. 

It is very important that the ''opacity'' interval 
6.w is much broader than the region of resonant 

The general form of this function, in the pres
ence of a quasi-local frequency in the low-fre
quency region and when condition (22) is satisfied 
for all the frequencies in question, is shown in Fig. 
(b) (curve IV). The function F(x) has a clearly 
pronounced maximum at the point x = x 4 = (1 + E) 1/ 2 

at which 

F(x4) ~ e/~ ~ c(wv/wimp) 3 ;>1. 

At low frequencies (x = w/wimp « 1) the func
tion F(x) is described by the expression 

F(x)- e~ xs. (26) 
(1+e) 2 

4 lFor the coefficient of reflection of elastic waves incident 
from an ideal crystal on a crystal with impurities, we have the 
following formula: 

R(w)={[ 1- (i+c:) Z:s t.(w) r +[ 2~ f.(w)y{w) ]) 

x{['1 + ( 1 + c:) 2:s PJ(w) r + [ 2~ J.(w)y(w) rrl· 
It is easy to see that, for all frequencies lying inside the inter
val ~w, the coefficient R is equal to unity, accurate to terms 
of the order of magnitude of the small parameters ({3/ £)2/3 << 1 
or ({3/l)112 « 1. 

damping of the elastic waves ow: 6.w » ow. This 
can be easily verified by using the aforementioned 
estimates of ow and 6.w: 

6w ( w· ··)2 - ~ c-'h ~P <1. 
LlW WD 

(24) 

It is important to note that under the condition (23) 
the inequality (24) does not depend on the mass 
ratio M/m. 

At frequencies lying to the right of the "opacity" 
region (w » Wimp), the dispersion again becomes 
small, and condition (19) reduces to inequality (22). 
We note an obvious and natural analogy between the 
dispersion of the elastic waves in a crystal with 
impurities that possess a quasi-local frequency, 
on the one hand, and the anomalous dispersion of 
the electromagnetic waves near the natural atomic 
or molecular frequencies, on the other. 

Bearing in mind all the foregoing, we proceed 
to analyze the imaginary parts of the elastic moduli 
J.1-(w) and a(w). The imaginary parts of these quanti
ties, in accord with (21), are proportional to the 
function F(w/wimp), which is determined by the 
expression 

(25) 

At high frequencies (x » 1) this function decreases 
quite rapidly: 

e 1 
F(x)~cp2 (x)::::::---. 

~ xs 
(27) 

The half-width of the peak of the curve F(x) has an 
order of magnitude 

e~ ~ c(M / m)2(wimp/ wv) 3• 

We deem it essential to point to the following 
circumstances, which results from the anomalous 
character of the dispersion near the quasi-local 
frequency. First, the maximum of the function 
F(x), i.e., in fact, the maximum of the imaginary 
parts of the elastic moduli, does not coincide with 
the maximum of the elastic-wave damping coeffi
cient. The relative displacement of the peaks of 
the two curves is 6.x = x 4 - 1 ~ cM/m. It is small 
when cM/m « 1, but increases linearly with in
creasing mass ratio M/m. Second, the sharp in
crease in the function F(x) takes place in a fre
quency interval corresponding to the ''opacity'' of 
the crystal (region of ''total internal reflection''). 
The maximum value for this function (at x = x 4) 

lies at the end of the interval 6.w, where 
A.(w)y(w) » 1. The fact that the main rise in the 
dislocation-energy loss takes place precisely in 
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the interval D.w seems perfectly natural to us. 
The entire region where an appreciable change 

takes place in F(x) lies outside the interval ow and 
is much broader than this interval. If we use ex
pression (25) to describe formally the function F(x) 
in the interval ow, then it turns out that F(x) is a 
smooth function without any singularities in this 
interval. Therefore, in integrating over the fre
quencies, the narrow interval ow near the quasi
local frequency cannot make an appreciable contri
bution to the deceleration force f(V). Consequently, 
the function F(x) can be regarded as specified by 
formula (25) for all values of its argument, and 
there is no need at all for separating the interval 
ow of resonant absorption of the elastic waves. 

3. FORCE OF SLOWING DOWN OF A DISLOCA
TION BY IMPURITIES 

To analyze the deceleration force of a disloca
tion in a medium with interstitial impurities, we 
rewrite (20) and insert the function F(x) into the 
expression for f(V): 

f(V) = - pst2 wimp[2b12 (1-~) + b22JkT"'i;(x) dx. 
:n:V s? ~ 

(28) 

We shall use the behavior of the function F'(x) des
cribed in Sec. 2, and establish the character of the 
dependence of the deceleration force on the disloca
tion velocity. 

If the dislocation velocity is sufficiently low, 

V ~ (wimp / ko) (1 + e)'/, '""" a(•)! imp• 

then we can calculate the deceleration force by 
using expression (26) for the function F(x) at low 
values of its argument. It then turns out that the 
deceleration force increases with velocity like 

j(V) = - a2V3, 

a2 = pst2ko4 [ 2b12 ( 1-~) + b22J e~ . (29) 
4:rtwimp 3 s? (1 + e) 2 

The order of magnitude of the coefficient o· 2 is (see 
(17)): 

(30) 

where J1. is the shear modulus of the ideal crystal. 
At sufficiently large dislocation velocities 

V ~ (wimp/ ko) (1 + e)'" '""" awimp' 

it is possible to put in (28) an infinite upper limit of 
integration, using the rapid decrease of the function 
F(x) at large values of its argument (x » 1). As a 
result we find that at such velocities the slowing-

down force is inversely proportional to the velocity: 

f(V) = -b~-tVo/ V, 

Vo=Wim~[2b12 (1-s12 )+b22 JI F(x)dx. (31) 
:rtb Sz2 

0 

Let us estimate the value of V0• An estimate of 
the integral entering into the definition of V0 can 
be obtained by multiplying the half-width of the 
peak of the F(x) curve by its height: 

r F(x)dx'""" e~~ = (c My 
o ~ m. 

Consequently, in order of magnitude, 

V0 '""" (eM/ m)2awtmP. (32) 

Comparing the behavior of the decelerating 
force f(V) at large and small velocities, we can 
conclude that it has a clearly pronounced maximum. 
The velocity (Vmax> at which f(V) reaches a maxi
mum is determined by the root of the equation 

z 

~ F(x)dx = zF(z), 
koV 

Z=--. 

Wimp 
(33) 

Since F(x) has a very sharp peak in a small vicinity 
of the point x = x4, we have in order of magnitude 

(34) 

Thus, the deceleration force of the dislocation, 
as a function of the dislocation velocity, has a 
sharply nonmonotonic character if the crystal con
tains impurities with quasi-local frequencies. If 
the impurity does not produce any quasi-local os
cillations, then the dependence of the deceleration 
force on the dislocation velocity is described by 
formula (29) for all velocities that admit of a 
macroscopic analysis. It must be borne in mind, 
however, that the coefficient entering into this 
formula is defined very roughly, since it contains 
a factor k~, that is, a parameter whose order of 
magnitude can only be estimated. As regards 
formula (31), it is accurate in this sense, since it 
contains only the macroscopic characteristics of 
the medium in the region of its applicability. 

4. DISLOCATION DECELERATION DUE TO DIF
FUSION OF IMPURITIES 

We consider, finally, the deceleration due to 
diffusion of impurities in the elastic field of the 
dislocation. In the analysis of this deceleration we 
confine ourselves, as already noted in the introduc
tion, to rather high dislocation velocities, at which 
the deviation of the impurity concentration c(r, t) 
from its equilibrium value c 0 at each point of the 
crystal can be regarded as small: 
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c(r, t) = c0 + c1 (r, t), c1(r, t) <co. 

We assume, as before, that the medium is iso
tropic. We denote by u(r, t) the displacement vec
tor of the elements of the medium, and by D the 
impurity diffusion coefficient. Then the elastic 
motion of the medium and the impurity diffusion 
associated with this motion are described in an 
approximation that is linear in the strains and in 
the concentration gradient by the following system 
of equations: 

{}2 
""Bt2u(r, t) = (sz2 - s12) grad div u(r, t) + s12~u(r, t) 

l']K 
--gradc1 (r, t), 

p 

(35) 

Here TJ is a coefficient characterizing the equili
brium relative change in volume when a single 
impurity is introduced[SJ (usually TJ ~ 1), K is the 
modulus of the volume compression, a 3 is the 
atomic volume, and kT is the temperature in energy 
units. 

Since we want to obtain the elastic-modulus 
frequency dependence brought about by the impur
ity diffusion, let us find the dispersion of the os
cillations, described by ( 35), of the vector u and of 
the concentration c 1• It is easy to imagine that the 
dispersion of interest to us will be determined by 
a parameter -rw, where 

D K 2 D D 
,; = Cl] 2a3--- ~ cpa3 - ~em-. (36) 

kT ps14 kT kT 

We can verify that Tw « 1 for all reasonable 
values of the temperature and for all frequencies. 
Therefore we can confine ourselves in the calcula
tions to the first nonvanishing power of Tw. We then 
obtain for longitudinal waves the dispersion equa
tion 

(37) 

In our approximation, of course, there is no dis
persion of the transverse waves (sik2 = w2). 

Using (37), we obtain expressions for the com
plex moduli of elasticity of the medium: 

cr(w) = ps?-/ (1 + i'tw). (38) 

Substituting (38) in formula (20) for the dislocation 
deceleration force, we obtain the following depen
dence of this force on the dislocation velocity 5>: 

S)Naturally, in an isotropic medium a deceleration of this 
type is experienced only by the edge component of the disloca
tion. 

(39) 

It is easy to estimate the order of magnitude of 
the coefficient cd in formula (39): 

(40) 

It is of interest to compare (39) with the magni
tude of the deceleration force (29) due to the elast
tic scattering of the sound waves by impurities. 
The ratio of the force (39) to the force (29) is of 
the order 

( m )2 ro D't (_!_ r ~ (!!!__ )2 (.!__)2 ()) vD paa 
M c v, M V kT 

~ (: r (; r :::m 0 

(41) 

At low temperatures, the diffusion velocity 
(v'wDD) is vanishingly small compared with the 
average thermal velocity (v'kT/m), and therefore 
the ratio (41) is small even when V ~ awimp' i.e., 
in the region, discussed in Sec. 3, of nonmonotonic 
variation of the deceleration force. Only at very 
low velocities does this ratio become of the order 
of unity. 

However, at sufficiently high temperatures, the 
ratio (41) increases rapidly with the increasing 
temperature, and the moving-dislocation energy 
dissipation caused by the impurity diffusion in its 
elastic field may turn out to be the main mechanism 
for the deceleration of the dislocation by the im
purities. 
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