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Specific features of the propagation of modulated waves in a transparent nonlinear dispersive 
medium are investigated. In particular, it is shown that a monochromatic wave can be unstable 
with respect to traveling perturbations of its a.. •.• Jlitude and frequency. In other cases, these 
perturbations undergo cumulative deformation instead of growing (two types of simple envelope 
waves are possible). Stationary modulated waves (periodic and single) were also found. 

WAVE propagation in a dispersive medium with 
cubic nonlinearity gives rise to so-called self­
action effects due to the dependence of the velocity 
of a wave upon its amplitude. The best currently 
known example is the self-focusing of stationary 
wave beams. [1J 

The present paper deals with self-action of an­
other kind manifested in the nonstationary case as 
nonlinear space-time deformation of the modulated­
wave envelopes (wave packet). 1> Typical of such 
processes is the relation between the variations 
of the amplitude and frequency envelopes caused 
by a simultaneous action of two factors: nonlin­
earity and dispersion. 

A suitable method of analyzing such problems 
is coordinate and time averaging, which yields 
nonstationary equations for the amplitude and 
phase (frequency) wave envelopes. Equations for 
the one-dimensional case and their typical solu­
tions are obtained below. Since non stationary 
processes in a dispersive medium cannot be fully 
described by postulating a nonlinear permittivity 
for the harmonic field, we use for the nonlinear 
polarization a simple dynamic model that is valid 
for isotropic dielectrics (Eq. lb). Incidentally, as 
expected from the derivation of averaged equa­
tions (terms with higher-than-second derivatives 
of slow variables were neglected), such equations 
are invariant for any type of time-dependent dis-

1>Examples of such nonstationary self-action were con­
sidered (apparently for the first time) by the author [2] and la­
ter by Whitham (3] (see also [4 ]). In particular, these papers 
fail to take dispersive blurring (the second derivatives of am­
plitude in (3)) into account; this must be considered in order 
to obtain the majority of effects discussed below. 

persion of the medium, preserving the qualitative 
character of the obtained results. 

1. ENVELOPE EQUATIONS 

The propagation of a plane wave in an isotropic 
weakly-nonlinear medium may be described with­
out accounting for losses by the following equa­
tions for effective field E and polarization P: 

c2Ezz = Ett + 4:nPtt, 

Ptt + '(f)o2P- aP3 = (wp2 / 4tt)E, 

(la) 

(lb) 

where w0, wp, and a are constants; the indices z 
and t denote differentiation. 

A solution of (1) will be sought in the form of a 
traveling wave with slowly varying amplitude and 
phase:2> 

E =A (z, t) {exp [i(wt- kz + w(z, t))] 

+ exp [ -i(wt- kz + cp(z, t)) ]}. 

Here, A and cp are real functions, and w and k 
are constants related by the dispersion equation 
for a linear medium: ck = w-1€, where E = 1 

(2) 

+ wJ!<w~ - w2). 

Substituting (2) into (lb), we can find P to any 
degree of accuracy, obtaining the following aver­
aged equations derived from (la) 3> 

2>The third harmonic generated in this process is usually 
small and can be found separately by the perturbation method. 
An exception is the case of weak dispersion (w-> 0) when the 
fundamental and third harmonic are synchronized and the field 
of the third harmonic can grow in a resonant manner. 

3)The analysis is limited to the transparency regions; the 
resonant effects occurring near w = w, and strongly dependent 
on the losses in the medium are not considered. 
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At+ vAz = c2Azcpz- S:4tcrt +A ( c2cpzz- Scptt) 
w 2w 

where v = k~ is the group velocity at the fre­
quency w. 

3a,w 6 
g= P (gA2 ~1). 

2(4n)2(wo2- w2)4 

(3a) 

(3b) 

The right-hand sides of (3) contain second deriva­
tives of slowly varying quantities and first deriv­
atives of the nonlinear terms (typical of the non­
stationary problem only). All are of second order 
of smallness, i.e., Eqs. (3) fall outside the limits 
of the geometrical optics approximation. 

From now on it will be more convenient to con­
sider the alternating component of the frequency 
rather than the phase correction. Differentiating 
(3b) with respect to t and denoting CfJtlw = 6 « 1, 
we obtain the following system in place of (~~): 

At+ v(1 + xll + g£,A2)Az- 1/2xA8 1 = 0, 

llt+v(1+x8-g£2A2)Bz (4a) 

+ 2g[1- c2v-2gA 2 + £2<'l]AA 1 

=-(xI 2w2) (Att I A)t. (4b) 

Here, K = c2 /v2 - s = -cw.fE k and ww, 

We note that the sign of K coincides with that 
of the difference w2 - w~. 

2. NONSTATIONARY SOLUTIONS 

A. We consider first the behavior of small de­
viations A' and o' from the constant values of A 
and 6 (we can obviously let 6 = 0 without loss of 
generality). Considering A' and o' proportional 
to exp [i(nt- Kz)], we get from (4) a dispersion 
equation of the type 

According to (5) small perturbations of the 
stationary plane wave produce different effects, 

depending upon the sign of g'. When g' < 0, the 
solution for the envelopes is a superposition of 
two undamped waves, fast and slow, whose veloci­
ties of propagation differ little from each other, 
u(Q) = Q/K. When g' > 0, the above statement re­
mains valid only for sufficiently large Q. If r2 2 

< w2g' A2, perturbations of the type defined in (5) 
can build up with an increment 

K' = I xI v-1Q[g'A2- (Q ;,w)2J"'. 

A maximum value of K' = K~ is reached at some 
frequency Q = rlm; these values are defined as 

(6) 

Thus when g' > 0, a monochromatic plane wave 
with a finite amplitude becomes unstable against 
perturbations of its amplitude and frequency at not 
too high a modulation frequency. The wave ulti­
mately breaks up into sections with lengths of the 
order of 21rv /rlm, in which the wave energy is con­
centrated. The process represents space-time 
auto-modulation due to variation of both the am­
plitude and frequency. As shown in Sec. 3, sta­
tionary waves with a time scale of the order of 
21r /rlm are possible. 

B. Equations (4) can be analyzed in greater de­
tail if the variation of A and 6 is sufficiently slow; 
in that case, third-derivative terms in the right­
hand side of (4b) can be neglected. The remaining 
"abbreviated" second-order quasilinear system 
is hyperbolic when g' < 0, in which case it has two 
sets of characteristics. By setting 6 = o(A) (o(O) 

= 0 to be specific), it is easy to find simple waves, 
i.e., particular solutions that are constant on the 
characteristics 

A =F±[t-zfu±(A)J, <'l = +2(ig'IA2)'1', 

u± = v[1 + 31 xI ( lg',IA2) 'h). (7) 

Here F ± are arbitrary functions. Each of the 
waves (7) is deformed in the course of propagation 
until regions of ambiguity are produced, for which 
solutions (7) are no longer valid; at this point we 
must include the neglected term in (4b). 

The particular feature of a simple wave is its 
exclusive property of having a common boundary 
with a region of constant A and o. [ 51 This is no 
longer true, however, if A = 0 in this region and 
both velocities u± coincide (a case of ''degener­
acy" of the families of characteristics). On the 
other hand, when A- 0 and 6-0, the abbrevi­
ated system (4) is linear and one can readily find 
its general solution. A non-trivial case occurs 
when A and o are small and o ~ A2• The abbre­
viated system (4) is then linear with respect to the 



WAVE PACKETS AND SELF-FOCUSING IN A NONLINEAR MEDIUM 799 

variables 6 and A 2; its solution (valid for any 
sign of g') is 

gz ( z) 6=-(A2)t+<P t-- , 
V V I 

(8) 

where F and <I> are arbitrary functions. If when 
z = 0 only the amplitude is modulated, <I> = 0, and 
6 increases up to a value of the order of (I g'IA2) 112, 

beyond which solution (7) is invalid. 
Let us now consider two previously discussed 

cases, [ 2, 61 in which it is possible to integrate the 
abbreviated system (4). In a nondispersive non­
linear medium (K = 0), the amplitude is deformed 

as a simple wave, and the frequency increases in 
some regions and decreases in others (it follows 
(7) in the initial stage). [ 21 In a linear medium 
(K = 0 or A- 0, 6 f- 0) a simple wave is associ­
ated with frequency (6) and the amplitude increases 
in the "compression" regions (such an effect is 
the basis of frequency-modulated radar-pulse com­
pression[ 71). The "modulation" approach is con­
sequently useful also for the solution of linear 
problems. [ 61 In both cases the solutions are valid 
within limited intervals, beyond which one must 
consider terms with higher derivatives of A. 

3. STATIONARY TRAVELING WAVES 

One of the most interesting problems concerns 
the existence of solutions in the form of stationary 
"envelope waves" propagating without deforma­
tion. In fact, the complete system (4) has such so­
lutionsY Regarding them as functions of the vari­
able 1J = t- z/w (w = const), we find from (4a) 

N w-v 1 
x6 = -+----£1gA2 (9) 

A 2 v 2 ' 

where N is the integration constant. 
Let us further consider a family of solutions 

that are finite for A = 0. For solutions of this 
type, N = 0 (an analysis of the general case pre­
sents no principal difficulties). Furthermore, one 
can as before consider without loss of generality 
that if 6 = 0 for A = 0, then w = v. Substituting 
(9) into (4b) and integrating once with respect to 7J, 
we obtain 

FIG. 1. Phase plane of equa­
tion (10) for g' > 0 and Q > 0. 

FIG. 2. Types of stationary modulated 
waves: (a) for g' < 0; (b, c, d) for g' > 0 
and Q > 0 (the last three cases correspond 
to various trajectory types in Fig. 1). 

a ... 

g' > 0 and Q > 0; its phase plane is shown in Fig. 1. 
A stationary unit pulse (corresponding to a closed 
separatrix of a saddle at the origin of coordinates) 
is a solution in this case. The peak amplitude Am 
of this pulse is (2Q/g') 112, and the characteristic 
pulse length T is of the order of 2n/w(g'A~/2) 1 1 2• 
These relations are also valid for periodic solu­
tions. We note that the frequency rlm = 2n /T co­
incides with the frequency found above for the 
maximum instability of the plane wave; this gives 
us reason to assume that the plane-wave decay 
described here leads to our stationary solutions or 
to similar ones. Figure 2 illustrates the basic 
types of solutions in this and other cases. 5> 

Thus we have in the general case a four-param­
eter family of stationary solutions of the systems 
(4), including a two-parameter family of waves 
such as a single wave packet (defined, for exam­
ple, by the amplitude and frequency at its maxi­
mum. The length of such a packet is inversely 
proportional to its amplitude, and its velocity is 
equal to the group velocity at the frequency corre­
sponding to the "wings" of the pulse where the 
amplitude is low. The remaining solutions are 
periodic and their amplitude either passes through 
zero, or does not turn to zero at any point. The 
latter solutions are possible only when g' > 0 and 

Q > 0, and an unmodulated wave with an amplitude 
(10) equal to Am/12 is a particular case of such a 

(Q is the constant of integration). 
Equation (10) can be easily analyzed in the 

phase plane. The most interesting case is that of 

4 lstationary waves in an active medium [•] are of a differ­
ent nature and can be considered in the approximation of geo­
metric optics. 

solution. 

5)Similar solutions are also typical of instantaneous field 
values in a weakly dispersive medium without dissipation. [9] 

It is not clear if we can extend this analogy to shock 
waves [2 •']; the existence of stationary shock waves of envel­
opes apparently requires the presence of a fairly specific 
type of dissipation in the medium. 
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The realization of these effects in various 
ranges depends upon two quantities: gA 2 (a non­
linearity parameter of the order of the nonlinear 
increment of E) and K (the dispersion parameter). 
In radio-frequency transmission lines containing 
the usual nonlinear elements (ferrites, semicon­
ductors, and ferroelectrics) these parameters are 
sufficiently diverse in magnitude and sign to allow 
for any of the above processes. These processes 
may be of significance also in the propagation of 
radio pulses in the ionosphere, where the cubic 
nonlinearity due to collective phenomena can be 
considerable and the distances traveled by an un­
attenuated wave are large. 

A similar estimate may also be of interest in 
optics. The values of E currently achievable in 
unfocused laser beams exceed 105 V/cm. In that 
case, the Kerr-effect nonlinearity in liquids (such 
as benzene) gives gA2 .~ 10-6 (the sign of g differs 
in various materials). The dispersion parameter 
K in optics is of the order of 10-2• As a result, 
(6) yields Qm ~ 10-2 w and K' ~ 10-6 k, whence for 
w ~ 2 x 1015 rad/sec and A. = (27r /k) 10-4 em we 
obtain 

Qm ~ 2n· 3 ·1012 radjsec, K';::: 10-2 em -1. 

Consequently, perturbations of an intense light 
pulse reach substantial magnitudes over distances 
of the order of 1 m; the modulation frequency cor­
responds to a wavelength of about 0.1 mm. These 
figures point to the possibility of observing the ef­
fect of increasing modulation of light (it persists 
even in multiple reflections between the resonator 
mirrors). We also note that the active medium of 
the laser has reactive nonlinearity for all modes 
that are detuned from the center of the spectral 
line of the active substance; it is therefore possi­
ble that laser emission pulsates with a very high 
modulation frequency (even in comparison to the 
frequency difference between neighboring axial 
modes). 

Analogous estimates indicate the possibility of 
a marked broadening of the intense-light-pulse 
spectrum corresponding to (8). 

Another possible area of application of the re­
sults is for problems in nonlinear quantum theory 
dealing with particle-like solutions of wave equa­
tions (see [ 10 J, for example). The stationary 
pulses derived in this paper represent a class of 
such particle-like solutions. 

In conclusion, let us consider the analogy be­
tween the above effects and stationary spatial self-

focusing. Equations (3) have much in common with 
two-dimensional equations of stationary quasi­
optics, [ 11 J in which the second derivatives with re­
spect to the transverse coordinate are replaced by 
derivatives with respect to the longitudinal coordi­
nate and time. In particular, along with the above­
described plane-wave instability, the plane wave 
may also be unstable against stationary perturba­
tions with a transverse field inhomogeneity. [ 12 J 

However, there are also differences. Thus nonlin­
ear terms with amplitude derivatives (proportional 
to ~ 1, 2), causing a large variety of effects, are 
typical of the nonstationary case. Furthermore, 
whereas in our notation the condition for spatial 
self-focusing is g > 0 (positive nonlinear part of E), 

the auto-modulation condition is g' = g/K > 0. 
These differences are due to the time-dependent 
nature of dispersion. 6> In general, the instability 
revealed here can be regarded as a mechanism of 
a longitudinal space-time self-focusing. 

The author is indebted to A. V. Gaponov for re­
viewing the results of this work. 
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6 )In this sense, the quasi-optical analog would be a 
medium with spatial dispersion of a special type. 


