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Stimulated processes occurring in the field of a monochromatic standing wave are considered 
within the framework of impact theory. The collision integral in the density matrix equation 
includes atom diffusion in velocity space and atomic-oscillator phase shifts that occur simul­
taneously with changes in the velocity of the atomic center of mass. When collisions of this 
kind are considered, the gas laser power becomes an asymmetric frequency function, in 
agreement with experimental results.[2•31 

1. INTRODUCTION 

BENNETT and others [1] observed an asymmetry 
of the neon line, ..\. = 3.39 f.J., due to collision per­
turbations of the emitting atoms. The same cause 
can apparently be ascribed to the asymmetric 
frequency dependence established by Javan and 
others. [2•31 

The results of the above research are of defi­
nite interest in relation to many viewpoints, and 
primarily to the problem of spectral line broad­
ening. The point is that the experimental condi­
tions of that research have a priori satisfied cer­
tain relevance criteria of the impact theory of 
line broadening (see [41, for example). According 
to the usual variants of this theory, however, the 
line contour should be symmetric owing to both 
Doppler broadening (if the velocity distribution of 
atoms is symmetric) and interaction broadening. 
Such a clear discrepancy between the above con­
clusion of the impact theory and the results of [1- 31 
has caused lively discussions [S- 71 • Fork and 
Pollack [S] stated that changes in the velocity of an 
atom in collisions cannot in principle result in 
asymmetry of line contour, because of the even 
velocity distribution of atoms; consequently, the 
phenomena observed in [1- 31 should be ascribed to 
interaction broadening. Javan and Szoke [G] adopted 
essentially the same view. 

It should be emphasized that the search for 
causes of the asymmetry is hardly a problem in 
alternatives. The point is that concurrent action 
of two causes of broadening (Doppler and collision 
broadening in this case) can result in an asym­
metric line contour even if each cause acting sep­
arately produces a symmetrical contour. It all 
depends on whether these two causes are statistic-

ally dependent or independent. If the broadening 
mechanisms under consideration are statistically 
independent, the resulting contour will be sym­
metrical. If the reverse is true, there will be no 
symmetry in general. This situation follows from 
the general theorems of Fourier analysis and is 
well known from the theory of fluctuation modula­
tion; similar phenomena have been studied in cer­
tain microwave circuits (see [S], for example). 

No such phenomena seem to have been previ­
ously observed in spectroscopy, although there 
are some indications of a statistical dependence 
of the broadening due to interaction and Doppler 
effect. [4] The first discussion in relation to spec­
troscopic problems was published by the author 
and Sobel'man [aJ, who postulated a general theory 
of Doppler broadening of spectral lines, taking 
collisions into account. It was found that the line 
contour is generally asymmetric in situations of 
practical interest involving broadening due to 
atom-atom collisions. Consequently, it seems to 
us, the explanation of the results obtained in [1-3] 

should be based on a concurrent consideration of 
the Doppler and collision broadening, taking their 
statistical dependence into account. The present 
paper deals with the theoretical analysis of this 
problem. 

Let us emphasize that such an interpretation 
means in essence that the collision integral in the 
density matrix equation cannot be reduced to the 
usual relaxation terms with some relaxation con­
stants. Such an approximation of the collision in­
tegral leads to a shifted but symmetrical line con­
tour. In this connection, Sec. 2 of this paper deals 
with a collision integral that describes atomic dif­
fusion in velocity space and takes into account the 
statistical dependence of the perturbations of in-
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ternal motions of the atom and of its translational 
motion. 

Subsequent sections deal with the saturation ef­
fect in a standing-wave field for two model equa­
tions of the collision integral (Sects. 3 and 4), and 
with the computation of a gas laser power (Sec. 5). 

2. GENERAL EQUATIONS 

The present paper deals with the case when the 
external field spectrum E ( t, r) is concentrated 
near the transition frequency wmn between two 
excited states m and n of an isolated atom, so 
that the two-level approximation can be used. We 
start with the following system of equations for 
the elements of the density matrix p: 

( :t + vV) Pmn = iVmn [Pmm- Pnn] +S, 

S; = -v;p_jj + S A;(v', v)p;;(r, v', t)dv' (j = m, n), 

S = - VPmn + ~A (v', v) Pmn (r, v', t) dv'. (2.1) 

Here, r and v are respectively the coordinate and 
velocity in the c.m.s. of the atom, qj is the excita­
tion rate of atoms in the states j, v, and liVmn 

= Pmn eiwmnt E ( t, r) is the matrix element of in­
teraction with the external field; the ± signs cor­
respond to j = m and n, and Aj ( v', v) and 
A ( v' , v) are the kernels of collision integrals Sj 
and S. 

In the absence of inelastic processes, collisions 
do not affect the total number of particles at each 
level, i.e., integrals with respect to v, of the 
diagonal collision integrals should turn to zero. 
This can take place if 

f; = v; -~;-:- v;- ~ A;(v, v')dv' == 0. 

In this case, Aj ( v', v) represents the probability 
(per unit time) of the change in velocity v'- v. 
When quenching collisions are taken into account, 
the r j are positive and determine the time in 
which the atoms with velocity v relax from the 
levels j = m,n. In the limiting case, when each 
collision leads to quenching (the Lorentz model), 
V'j = o and r j = Vj. 

The kernel A(v', v) of the nondiagonal colli­
sion integral is in general complex, reflecting the 
level shift due to collision (the Weisskopf broad­
ening mechanism), or, in classical terms, the 

phase shift of the atomic oscillatorY The differ­
ence 

v- ~ A(v, v')dv' = r +ill (2.2) 

determines the impact width r and the shift A of 
the spectral line. 

From now on it will be convenient to distinguish 
two kinds of collisions. In collisions of the first 
kind the atom velocity remains unchanged but a 
phase shift can occur. This obviously includes 
collisions with electrons. In collisions of the 
second kind both the atom velocity and the phase of 
the atomic oscillator can change (collisions with 
heavy particles, such as atoms, ions, and mole­
cules). Collisions of the first and second kind can 
be considered statistically independent and thus the 
kernels can be represented in the following form: 

A;(v', v) = ; 1;b(v- v') + A2;(v', v), v; = "H + V2;; 

A (v', v) =, ~b (v- v') + A2(v', v), 

Substituting (2.3) in (2.1), we obtain 

( ~+vV) p;; =- ft;pjj 
\ iJt 

- { v2;P;;- ~ A2; (v', v) Pii (r, v', t) dv'} 

+ 2 Re[iVmn °Pmn] + q;, 

V = Vt + Vz. 

(2.3) 

( 0~ + vV) Pmn = - (ft + i!lt) Pmn- { 'V2Pmn 

- ~ A2(v', V)Pmn (r, v', t)dv'} + iV mn (Pmm- Pnn); 

(2.4) 

The quantities rij• rt> and A1 determine the 
contributions of collisions of the first kind to the 
quenching probability of the j = m, n levels, to 
the collision width, and to the line shift. The cor­
responding relaxation terms are of the standard 
form. The collision-integral term determined by 
collisions of the second kind has a different struc­
ture. One could arbitrarily break it up to form 
terms 

1 >we note that Pmn is analogous to the Fourier transform 
f(r,v,t) (with respect to the phase variable q>) of the classical 
oscillator distribution function f(r, v, q>, t) introduced in [9]. 

On the other hand, kernel A(v',v) corresponds to the Four-
ier transform 1{(v', v) of the probability (per unit time) of the 
discontinuity v' -+ v, q>' -+ (/>· 
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r2iPH = (v2;- ;2;) PH= ( V2;- ~ A2;(v, v')dv') p;;, 

(rz + il\2) Pmn = {v2- V2) Pmn = ( V2- ~ A2 (v, v') dv') Pmn, 

(2.5) 

interpreting r 2j. r 2, and ~2 as the quenching, 
width, and shift of the lines due to collisions of the 
second kind. However, the remaining part of the 
collision integral would be dependent upon both 
velocity and phase changes. The impossibility of 
separating the collision integral into two terms 
each of which defines only a single process, is 
clearly due to the fact that these processes occur 
simultaneously in every collision act and, there­
fore, are statistically dependent. 

Quenching due to spontaneous transitions has 
not been considered in the above. As we know, 
allowance for spontaneous transitions leads to an 
increase of rtj and r1 by 2yj and 'Ym + 'Yn· where 
2yj are the probabilities of spontaneous quenching 
of the j = m, n states. We shall henceforth as­
sume that r 1j and r 1 have been suitably rede­
fined. 

The range of applicability of (2.4) is limited by 
a number of considerations. Let us first note the 
usual limitations connected with the impact ap­
proximation and the neglect of energy-level de­
generacy. A specific case is the linearity of the 
collision integral, signifying neglect of the colli­
sions of atoms situated at levels m and n. This 
assumption is fully justified in the case of a large 
number of objects characterized by a relatively 
low concentration of excited atoms. 

The system (2.4) will be solved by successive 
approximations assuming a weak interaction with 
the field. For this purpose, it suffices to find the 
Green's fu.nctions fi and f of Eq.s. (2.4) with 
Vmn = 0, I.e., to solve the equations 

( :t + vV + r1j + V2j )t; 

- ~ A2;(v', v)/;(r, v', tjro, vo, to)dv' = ll(x- xo), 

( :t+vV+r1+iA1+v2)t 

- ~ A2 (v', v) /(r, v', tj ro, Vo, to) dv' = 6 (x- xo), (2 .6) 

where x and x0 designate the sets of variables r, 
v, t and r 0, v0, t 0• If the solutions of (2.6) are 
known, the ( 2s + 1 )th approximation for Pmn and 
the ( 2s )th approximation for Pjj can be written 
as follows: 

(2s+1) . \ I (2s) (2s) 
Pmn (x)= t J f(x xo)Vmn(xo)[Pmm(Xo)-pnn(xo)]dxo, 

(2-J (0) \ I I R r·v • (2s-1) ) 1 dx Pii (x) = Pii + J ;(X Xo) ·2 e l mn (xo) Pmn (xo o, 

co> r I Pii (x) = J /; (x xo) q; (xo) dxo. (2. 7) 

In particular, when the first-order nonlinear cor­
rections (to be considered below) are taken into 
account, we have 

p;)2> (x) = p;]0l(x) =F 2 ~ /;(xlx1) 

X·Re [V mn • (xi)f(xdxo) V mn (xo)] N(xo)dxo dxh (2.8) 

(3) \' Pmn(x) = i J f(xlxo) Vmn(xo)N(xo)dxo 

-i~f(x!x2)Vmn(x2) .~ /;(x2!x1) 
j==m, n 

X Re [V mn • (x1)f(xtlxo) V mn (xo)J · N(xo)dxo dx1 dx2, 

(2.9) 
where 

N(x) = ~ {fm(xlxo)qm(xo)- fn(xixo)qn(xo)}dxo. 

We are interested in the behavior of the atom 
in the field of a monochromatic standing wave with 
a frequency w: 

Vmn(t, r} = Ge-Wt COS kr, Q = ro- Wmn· (2.10) 

To exclude the effect of excitation diffusion and 
inhomogeneous velocity distribution which is inde­
pendent of the field, let us regard qj as independ­
ent of the coordinate r and the time t, and as­
sume a Maxwellian dependence on v: 

q;(x) = Q;WM(v), WM(v) = CJ'nv)-3 exp (-v2/v2). 

(2.11) 

Here Qj is the total number of acts of atomic ex­
citation to the level j in a unit volume per unit 
time. 

3. THE STRONG COLLISION MODEL 

Following Keilson and Storer [tO], we consider 
the kernels 

V2; { (v- yv') 2 } 
A2;(v', v) = exp - , 

[:nv2(1- y2)ff, v2(1- y2) (3.1) 

V2 { (v-yv')2} 
A 2 (v', v) = exp -. . 

[:nv2(1- y2)]'/, v2(1- y2) 
(3.2) 

It follows from (3.1) that the ratio of the aver­
age atomic velocities after and before collision is 
y; and the velocity dispersion is ( 1 - y2 ) v2• Con­
sequently, the basic assumption of model (3.1) is 
that the above ratio is considered independent of 
v'. The value of the constant y should be chosen 
in accordance with the specific nature of the col­
lisions. If the emitting particle is scattered by a 
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much lighter particle, then 1 - y « 1 and each 
collision results in relatively small velocity 
changes. This limiting case will be called the 
weak-collision model and will be discussed in 
Sec. 4. An inverse ratio of masses of the emitting 
and perturbing particles, or even their equality, 
allows us to assume that y ::::o 0. [10• til In this case 
the distribution of atoms with respect to the veloc­
ities v after the collision does not depend upon 
v' , and the change in velocity is of the order of 
v. This case will be designated as the strong col­
lision model. 

Let 

A2;{v', v) = V";iWl'.r(v), A2(v', v) = ~WM(v). (3.3) 

The solutions of (2.6) with kernels of this type 
are given by 

/(r, v, tjro, Vo, to)= ~ exp [-iQ (t- to) 

+ ik(r- r0)]F(k, v, Olvo)dkdQ, 

F(k, v, Olvo) = p ~ ikv { 6(v- Vo) 

terms of the power series resulting from an ex­
pansion of the ratios of these parameters to kV. 

Substituting f and fj from (3.4) and (3.5) into 
(2.8) and (2.9), integrating with respect to xj, and 
averaging Pmn over v, we obtain, 

Pmm- Pnn = NWM(v) 

x { 1 _ G2 ~ _ 1 [ r 1 + v2 
2 i::. n f1i + 'V2i (f1+v2) 2+ (Q-~t-kv)2 

+- ft + 'V2 l} 
(ft+v2) 2 +(Q-~1 +kv)2 J 

(3.7) 

<Pmn>v = i;n:NVmn(t, r) {J1 (Q) - 1/~G2Jz(Q)}, (3.8) 

J (Q - 1 z (p, k) Q 
1 )-- 1 -z( k)' p=f1+v2-i( -~1), 

:rt - 'V2 p, 
(3.9) 

(3.10) 

N = Qm/fm- Qn/fn, ri = ft; + f 2;, j = m,n. v2 WM(v) } 
+ 1 ,.- vzZ(p, k) p + ikvo. ' (3.4) (3.11) 

p = r1 + 'Vz- i(Q- ~1); 

/;(r, v, tiro, Vo, to)= ~ exp[-iQ(t- to)+ ik(r- r0)] 

X Fi(k, v, Q lv0)dk dQ, 

-
1 { 'V2i 

Fi(k, v, Olvo) = -+-.k- 6(v-vo)+ 1 - Z( -k) 
Pi t v - v2i Pi• 

WM(v) } ·n 
X---- Pi= f1i + 'V2i- t~'· 

Pi+ ikvo 
(3.5) 

The following notation has been introduced here: 

where <I> ( x) is the probability integral. 2> 

Since it is intended to apply the theory to the 
analysis of gas laser properties and to the inter­
pretation of the results of[1-3l, further computa­
tions will be carried out on the assumption that 
the Doppler linewidth kv is considerably larger 
than all constants r, r m• rn. v, Vm. Vn. There­
fore, the following formulas contain only the first 

2 >Z(p,k) differs from the function w(pjkii) tabulated in [12] 

by the factor y;lkv. 

The parameter N is the integral (with respect 
to velocities) difference of populations of levels m 
and n when G = 0. It follows from (3. 7) that in the 
absence of the field the Pij ( v ) are proportional to 
the equilibrium distribution WM ( v). The second 
term in the braces in (3. 7) is a nonequilibrium ad­
dition due to stimulated transitions. The field in­
teracts most effectively with atoms whose velocity 
projection on the k direction satisfies the condi­
tion 

kv = +(Q -~t). (3.12) 

We emphasize that only ~1 appears in (3.12); 
A2 does not, in spite of its seeming relevance. To 
understand this clearly, one should take into con­
sideration two points: the specific features of the 
strong collision model, and the simultaneity of 
phase and velocity variation in collisions of the 
second kind. In the model under consideration, the 
velocity of the atom changes in a collision by an 
amount on the order of v » ( r 1 + v2 )/k. Conse­
quently, the atom practically does not interact with 
the field after the collision. Therefore, the phase 
shift acquired in the course of the collision ''does 
not have time" to appear. 

The widths of the nonequilibrium "dips" in the 
velocity distribution (more correctly, in the dis­
tribution with respect to k · v) of the atoms equals 
r 1 + v2• In the absence of collisions, it is deter-
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mined by the radiative width Ym + Yn· Let us note 
that in our model the increase in dip width is pro­
portional to the frequencies of collisions of both 
kinds, i.e., it is proportional to the concentrations 
of the perturbing particles. 

Let us consider the relative power of stimulated 
emission: 

R(Q) = -2hw Re [iVmn"(Pmn>v] 

= 2rrhw G2 cos2 kr Re {J1 (Q) - 1/ 4G2/2 (Q) }. (3.13) 

We note that the nonlinear dependence of R ( fl ) 
on the field amplitude in our approximation does 
not lead to an optical inhomogeneity of the medium: 
the expression in the braces in (3.13) does not 
depend on r and the factor in front of the braces 
is proportional to squared field at point r. This 
result is due to two causes: large Doppler line 
width and the approximation used in analyzing the 
nonlinear effects. If the atoms are fixed, the in­
homogeneity of the medium is given by the terms 
of order G4 • [t3, t4J On the other hand, if the Dop­
pler line width is much larger than all the relaxa­
tion constants, the inhomogeneity occurs only when 
G6 or [( v + r )/kV]2 G4 terms are taken into ac­
count. 

The function It (Q) = ReJt (Q) determines the 
line contour (normalized to unity in area) without 
taking saturation into account; the function has 
been studied in detail in [9). 3> In the assumption 
that kv » rt or v2, the only significant fact is that 
It ( Q) is an asymmetric frequency function; the 
center of gravity of It ( Q) is located at Q = .6.t 
+ .6.2, while the maximum of the function occurs at 

(3.14) 

In other words, phase shifts occurring in collisions 
of the second kind shift the line maximum anomal­
ously by an amount twice as large as in the case of 
collision broadening, the latter being statistically 
independent of the Doppler broadening (.6.t ). The 
asymmetry can be accounted for by retaining the 
.6.2 term in (3.9): 

1 [ ( Q- dt )2] Re It (Q)::::::---:---::- exp - 1 _ {1 + 2Ll2 Im Z (p, k)]. 
l'n kv ' kv 

(3.15) 

The function 12 ( Q) = ReJ2 ( Q) gives the line 
contour variation due to the nonequilibrium veloc­
ity distribution of the atoms in the external field. 
Using (3.15) and (3.10), we obtain in lieu of 

3 "rhe notation J(Q) = J ,(f!), I(f!) = I,(f!) was used in [9 ]. 

(3.16) 

Since v2 + rt « kv, Eq. (3.16) defines a contour 
with a total width of the order of kV, within which 
there is a comparatively sharp dip rt + v2 wide, 
having a minimum at the frequency of Q2max = .6.t 
(Fig. 1) shifted by 2.6. 2 relative to the maximum of 
the function It ( Q). Consequently, the oscillator 
phase shifts that are synchronous with the atom 
velocity changes can produce asymmetry in R( Q ), 
if .6.2 ~ 0. 

0 

FIG. 1 

The dip in the R ( Q ) curve is due to the change 
in the distribution of the atoms with respect to v 
and also to the fact that the field has the form of 
a standing wave. [ts,tsJ The dependence of the width 
and depth of the dip on the collision frequency 
finds an obvious intuitive interpretation in the fact 
that elastic collisions result in diffusion of the 
atoms in velocity space, in the smoothing of the 
non-uniformity of Pjj• and in the reduced effect of 
the field on R ( Q). Since the nonequilibrium part 
is relatively narrow (-rtf k), elastic collisions 
significantly affect the nonlinear term (with re­
spect to G2 ) if v2 - r t· The linear term of 
I1 ( f! ), on the other hand, changes noticeably only 
if 112 - kv, since the effect of collisions consists 
in this case (given equilibrium velocity distribu­
tion) in retarding the motion of the atoms. [9) 

4. THE WEAK COLLISION MODEL 

We may naturally expect that the effect of dif­
fusion on the nonlinear phenomena will be strongly 
dependent upon the nature of the elastic collisions. 
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Let us thus consider a model whose limiting case 
may be regarded as the opposite of the subject of 
Sec. 3. In the strong collision model, the velocity 
of the atom changed in a single collision by an 
amount on the order of v. Now, let the velocity of 
the emitting atom be changed to a marked extent 
only after a large number of collisions, each of 
which contributes a small lv- v'l. This corre­
sponds to the following inequality in (3.1) and (3.2): 

1-y~i. (4.1) 

It can be shown [1o] that the collision integrals in 
(2.4) assume under these conditions the Fokker­
Planck form, with an accuracy to the terms of the 
order of ( 1 - y )2: 

Si = -riPii + fli[divv (VPJJ) + 1Mi211v Pii1. 

S = - (I' + i./1) Pmn + fl [ divv ( YPmn) + 1 lz~v Pmn], ( 4. 2) 

where 

r;=r!j+rzj, r+iD.=r~+r2+i(D.i+D.z), 

fli= (vzj-r2J)(1-y), f!= (v2-rz-i/1z)(1-y). 

The parameters 1-tj are the ~o-called dynamic 
friction coefficients, and J..tjv o/ 2 are the diffusion 
coefficients (in the velocity space). It can be seen 
from (4.2) and (2.5) that ilj decreases in the pres­
ence of inelastic collisions. The quantity J..t is 
complex, reflecting a phase shift of the atomic 
oscillator in collision. 

The solution fj and f of (2.6) with collision 
integrals ( 4. 2) can be written as 

a= iJ2flJ-2(fl{t'- (1- e-ll;~) - ilz(1- e-ll;T)2], 

b = 1lziJ2flr1(1- e-11;')2, c = 1lzV2(1- e-211;~), 

't' = t- to, s = r- ro - Yo (1 - e-ll;~) I flj, 
1) = v- v0e-ll;T. (4.3) 

The expression for f (xI Xo) will be omitted, since 
it is obtained from ( 4. 3) by replacing r j by 
r + ~ and J..tj by J..t. 

Equations (4.3) show that when T = t - t 0 = 0, 
the function fj becomes o ( r - r 0 ) o ( v - v0 ). Its 
width along v, equal to rc, increases in time, 
approaching v/FZ after a time interval ~ 1/ J..t.i, and 
the maximum shifts at the same time towards 
v = 0. We recall that the evolution of the velocity 
distribution was different in the strong collision 
model, comprising two terms in each instant of 
time (see (3.4)): one proportional to o ( v - v0 ), 

and the other proportional to the equilibrium dis­
tribution WM ( v). Only the relative weight of 
these terms changed with time (the characteristic 
time was 1hJ2j). 

The results of Sec. 3 show that the relatively 
low collision frequencies are the most interesting. 
Therefore, we omit the rather awkward general 
formulas for the functions J 1 and J 2 in (3.8), and 
use only corrections of first order in J..t and J..tj· 
Let us assume that 

fl; 1 4r j < r 1 kv ~ 1. 

It can then be shown that 

1 "" kv 2 

J i( Q) ~ - ~ exp [- ( - \ x2 + i (Q - D.) x 
Jt 0 2 ) 

+ ~(kv)Zfl"x3 J dx, 
12 

[ (kv)2 , J 
Xexp -rx-UflX3 

Here, 

(4.4) 

(4.5) 

(4.6) 

fl=fl'+i~-t", ai2 = 1/s(kv) 2 flJiri> j=m, n. 

It is seen from (4.5) that I1 ( Q) has a width of 
the order of kv; the function I2 ( Q ) has two terms, 
as in the strong collision model: one has a width 
kv (as does the function Q), and the other, repre­
sented by the second term in the braces in ((4.6), 
is much narrower than kv (this can be readily 
verified by estimating with the aid of ( 4 .4) the 
region x, in which the coefficients of the first line 
in (4.6) are substantially different from zero). 
Thus, if ( 4.4) is satisfied, the contour R ( Q) will 
have a "sharp dip" against a fairly wide Doppler 
background in the model of (4.2), too. 

It can be easily shown that the function I1 ( Q ) 

has a maximum when 

(4. 7) 

It follows from (4.2) that ~-t" ~- D-2. Consequently, 
the term J..t 11 I 2 leads to an additional shift of the 
maximum of I1 ( Q ) in the same direction as ~2 . 

The ''sharp term'' in I2 ( Q) is an asymmetric 
function of the frequency. In fact, its center of 
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gravity lies at Q =A =At + A 2, and its maximum 
is displaced from that point, owing to the term 
Y24 i ( kv)2 JJ."x3 in the argument of the exponential 
function. For example, 

Q2max=~i+i12+ 1!2{kv/r)2!-l", (4.8) 

if 

(4. 9) 

It follows from (4. 7) and (4.8) that I1 and I2 reach 
a maximum value at different frequencies. In con­
tradistinction to the strong collision model, the 
difference between Q1 max and r2 2 max is basically 
due to the change in r2 2 max• since kv » r. It is 
significant that the term Y2 ( kv/r) 2JJ." in (4.8) has 
a different sign than A 2 and, in general, may have 
a different sign than At. Therefore, it is not im­
possible to select conditions so as to render 
Q2 max = 0, i.e., so that the maximum of I2 corre­
sponds to the unperturbed transition frequency. 
This case is obviously of exceptionally great in­
terest in the problem of stabilizing the oscillation 
frequency. 

Let us consider R ( Q ) for the case when the 
cubic terms can be neglected in the arguments of 
the exponential functions in (4.5) and (4.6): 

~-t" = 0, ~-t' I ~-t; ~ r I r ;. ( 4 .10) 

Under this condition, I2 can be represented by in­
tegral exponential functions of complex argument. 
Numerical computations carried out with the aid 

f t bl [t 7] • o a es enabled us to approximate I2 by dis-
persion curves having certain effective widths. 
As a result it was possible to represent R ( Q ) as 
follows: 

R(Q) = y~NG' exp [- ( Q _ ~) 2] 
kv kv 

X 1-- 7 1 + PJ { G2 ~ 1 [ A .2 ]} 

4i=~,npiri P;2+(Q-~)2 • 

P·- r{1 + 3a}fr2 } 
J - (1 + 13a}fr2) '" ' 

(kv")2 w 
a/= --8- /_ (j = m,n). 

J 

(4.11) 

The "sharp dip" is determined in this case by two 
terms which differ from each other when rm "' r n· 

The width of the "dip" is controlled by f3n1 and 
f3n, which depend on the parameters kv( JJ.ir· )1/ 2. 
The physical significance of these parameier~ is 
quite clear. According to (4.8), the dispersion of 
the atom velocity is 

(4 .12) 

Consequently, kV ( Jl.j I r j )t/ 2 is the rms change 
in the Doppler shift due to the diffusion of the 
atoms during the time T = 1/rj when the atom 
occupies the levels j = m, n. 

According to [sJ, weak collisions cause a marked 
change in I1 only when J1. 1 ~ kv. The relation in 

the nonlinear term of R ( Q) is a sufficient condi­
tion to ensure a fully perceptible effect of the col­
lisions. The difference is due to the following 
considerations. In the linear problem the role of 
collisions is reduced to the retardation of the dis­
placement of the atom over a distance of the order 
of A./27T; this will happen if the atom suffers a sub­
stantial velocity change in flight over a distance of 
A./27T: A./27TV = 1/kv ~ 1/JJ.j- In the nonlinear prob­
lem, on the other hand, the atoms have a nonequili­
brium velocity distribution and the main effect of the 
collisions is to restore the equilibrium. The width 
of the nonequilibrium term is of the order of r /k 
and it is quite obvious that the collisions become 
effective if the order of the velocity dispersion 
vv' JJ.jlrl reaches r/k during the lifetimes rrJ 
and ru . On the other hand, conditions (4)4 signify 
that the velocity dispersion does not exceed v, 
although it may be larger than r/k. 

According to (3.16), strong collisions will be 
effective in our sense if v ~ r. The change in the 
characteristic parameter (compared with the weak 
collision model) is due to the fact that in the case 
treated in Sec. 3 the atom may change its velocity 
in each collision by a quantity v, so that a rela­
tively small fraction of the atoms will fall into the 
velocity interval r/k. 

Only Jl.m and Jl.n depend on the concentration 
of perturbing particles in expression (4.11) for 
widths !3m and !3n· If Jl.j is sufficiently small, we 
can retain only unity under the radical sign. In 
that case, however, the addition to r, due to col­
li~ions of the second kind and proportional to Jl.j. 
wrll not exceed 10%. Therefore, an experimental 
detection of the effects of collisions of the second 
kind is possible only in the opposite limiting case: 

A ~ r + 3 -v 1-ti kv v 1-ti pj= --=-kv -, ~ ~> 1, j = m,n. (4.13) 
2l'26 r; r r; 

Thus, in cases of practical interest the addition to 
r is proportional to the square root of the concen­
tration of the perturbing particles. 

Let us note that the "sharp" term in (4.11) 
comprises one-half of I2 at the maximum point, 
Q =A. The same ratio holds in the case of strong 
collisions (see (3.16)). However, if one cannot 
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neglect the cubic terms in the integrand of (4.6), 
the "sharp term" can be easily shown to be less 
than Y2 12 max· This effect has been noted among 
other experimental results in [2]. Nevertheless, a 
different interpretation was given in [2]. 

Under the conditions reported in [21, the weak 
collision model should apparently be more appro­
priate. This is due to the fact that the main role 
in [2] was played by the elastic scattering of neon 
(atomic weight 20) by He4• Given a mass ratio of 
5: 1, the persistence of velocities in the hard 
sphere model amounts to about 80%. [11 ] In other 
words, the velocity of the emitting atom (neon) is 
changed by the collisions by not more than 20% on 
the average; the comparatively small change is 
typical of the weak collision model. 

5. GENERATION POWER AS A FUNCTION OF 
THE FREQUENCY 

The power P of a laser can be determined by 
equating the output flux from the working volume 
to the power emitted in the active medium. [131 A 
simple derivation yields 

1 [ l1max] (5 1) 
P(Q) = B J2(Q) '11- Ji(Q) . . 

Here 7J is pump excess over threshold for 
Q = Q 1max· Since we are interested in P as a 
function of Q, the coefficient B, which is prac­
tically independent of Q, will not be specified in 
detail. 

Let us use (3.16) to make (5.1) more specific. 
Assuming that 7J - 1 « 1, we get 

P ( Q) = [ '11 - 1 - ( Q - ~;v 2~z rJ 
[ (f1 + vz)2 J·-i 

X 1 + . 
(fi + '\12) 2 + (Q- ~1) 2 

(5.2) 

Figure 2 illustrates (5.2); case (a) corresponds to 
~2 = 0, when P ( Q) is symmetrical with respect 
to Q = ~ 1 ; in case (b) the contour of P ( Q) is 
assymmetric and its assymetry is due to a shift 

a b 

FIG. 2 

of the maxima of the functions I1 ( Q) and l2 ( Q) by 
2~2 (in Fig. 2, ~2 = -(v2 + rd/4). 

In the strong collision model P ( Q ) will also 
be asymmetric if ~2 ~ 0. In contrast with (5.2), the 
asymmetry is due not only to the difference be­
tween Q 1 max and 0 2 max• but also to the asym­
metry of the function I2 ( Q) itself. 

Thus, the impact theory provides a natural ex­
planation of the main results of [1- 3] if account is 
taken of the statistical dependence of the Doppler 
and interaction broadening. If the interpretation 
assumed in this work corresponds to reality (which, 
of course, requires a detailed experimental verifi­
cation), there are interesting possibilities for the 
investigation of various elastic and inelastic 
processes accompanying atomic collisions. It is 
significant that the typical experimental conditions 
(density ~ 1016 cm-3 and electron concentration 
~ 1011 cm- 3 ) are quite favorable for the identifica­
tion of a comparatively small number of determin­
ing factors. 
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