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We formulate the basic equations for the electrodynamics of two-band superconductors. In the 
nearly free electron approximation we study the magnetic properties of pure two-band super
conductors in the neighborhood of Hc2 (He,$ Hc2). We obtain an expression for the free energy 
of the system in the second approximation in the difference between Hc2 and the magnetic in
duction B, and using this we study other magnetic characteristics. We show that two-band su
perconductors of the second kind are characterized by two constants Kt and K2 which are 
larger than 1/-12 and that as a consequence the free energy is, in general, not a monotonic 
function of the parameter u of the theory of the mixed state, and that hence the minimum value 
of u (u > 1) is not always realized in such superconductors, in contradistinction from the single
band case. We show for the case of superconductors with a large concentration of non-magnetic 
impurities that the basic equations of the theory acquire a single-band character with an appro
priate definition on a two-band basis of the critical temperature Tc and the Ginzburg-Landau 
parameter K. 

1. INTRODUCTION 

IN [ u (see also [ 2 J) the thermodynamic proper
ties of pure two-band superconductors were con
sidered on the basis of the BCS model [ 3 J and the 
Bogolyubov u-v transformation. An attempt to con
sider the electrodynamic properties of pure two
band superconductors is contained in a paper by 
Tilley, [ SJ in which the upper critical magnetic 
field for the superconductor was determined. 

In the present paper we formulate the basic 
equations for the electrodynamics of two-band su
perconductors in a form valid for both pure super
conductors and superconductors with impurities. 
We study the properties of two-band superconduc
tors of the second kind. We show that the electro
magnetic properties of pure two-band substances 
are determined by two parameters K (larger than 
1//2 ) and that two-band superconductors with a 
large concentration of non-magnetic impurities in 
the vicinity of the critical temperature T c ean be 
described by equations of the single-band type, 
provided the quantity T c and the appropriate pa
rameter K are defined from the two-band scheme. 
The study is carried out on the basis of Abriko
sov's theory(SJ of type II superconductors and the 
development of that theory in the papers by Kleiner 
et al. [ 7 J and Lasher. [ 8 J 

2. BASIC EQUATIONS 

Using the Hamiltonian for two-band supercon
ductors from [ 1 J supplemented by an electron
impurity interaction, we get the equations for the 
temperature-dependent Green functions[ SJ 

Gmn (xcrx'a'l-r- -r') = <T¢m (xa't');j;"n (x' a'-r')). 

Rmn (xax'a'l•- •') = <T¢m(xat)¢n (x'a'-r') \ - ~ 

Pmn (xax' a' 1-r- -r') = <T¢m (xa<) in (x' a't')> (1) 

in the form 

l-iQn+Ho( -inV-: A) J 

780 

X Gmn(xax'a'jQ)+ ~· ~ dy'\jl,;:k(Y) 
n'ks 

n's 

X Pmn (xsx' a' I Q) = <'>aa' <'>mn ~'\jlmk (x) tiJ,;'k (x'), (2) 
k 

- ~· ~ dy'ljlm/t(Y)'IjJ,;:k(x)Vsa(Y)Pn'n(YsX'a'jQ) 
skn' 
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(3) 
n's' 

1 
Llnas (x) = Rnn (xaxs IO) =-~ Rnn (xaxsl Q), 

~ !l 

• 1 ~ 
Llnsa(x) = Pnn (xsxa I 0) =- LJ·Pnn (xsxcrl Q) 

~ Q 

(4) 

A similar equation holds for the R functions. This 
set of equations generalizes Gor'kov's equations[10J 
to the two-band case (n,m = 1,2 are the band in
dices). Here l/Jmk(X) are Bloch functions while the 
remainder of the notation is the usual one. 

We introduce the Green function gnm(xax'u' I Q) 

of the normal metal with impurities. We can then 
write Eqs. (2) and (3) in the form 

Gmn(xcrx'cr'IQ) + ~ ~ dy Vpzgmp(xcrycr'l Q)Llls's(Y) 
lpss' 

X Ppn (ysx'cr' I Q) = gmn (xux' a' I Q), (5) 

Pnm (x' cr'xcr I Q)-

X - ~ ~ dy VzpLlzs;,(y)Gpn(ysx'cr'l- Q) 
lpss' 

X gpm(ys'xal Q) = 0. (6) 

We introduce new quantities 

(7) 

It is well known that at temperatures T close 
to the critical temperature and also in the case of 
large concentrations of paramagnetic impurities 
the quantities t.nuu' are small; we can then start 
from the integral equations (5) and (6) to obtain 
the following set: 

r~~ (x) = ! ~· ~ ~ dy v nm gn'n (ys'xcr I Q) r:;:· (Y) 
P 0 nn'ss' 

X gn•n(ysxa'I-Q)-! ~· ~· ~ 
P g nn'pp' aa'j3f3'ss' 

X ~ dy dy' dy" V nm r:~\y) 

(8) 

All quantities occurring in these formulae depend 
on the electromagnetic potential A(x). According 
to [ 10 J , the dependence of the Green functions on 
the magnetic field is in the form of phase factors. 
Expanding these factors in a power series in the 
quantity A and assuming that the quantities r(x) 
depend weakly on their argument x, we obtain the 
following set of Ginzburg-Landau[ 11J equations for 
two-band superconductors: 

.m ~ n'n •n 
r "'" (x) = LJ v nm Qs'<Js<J' (x) r ss' (x) 

nn'ss' 

•n' p •m' 
X fss' (x) f a.'a.(x) f~w (x), (9) 

where 

n'n . r n'n 
Qs•aw(x; J) = J dy (y- x) jQs•asa•(x; y), 

n1n . r n'n 
Qs~asa' (x; Jl) = .\ dy (y - x) i (y- x) zQs'rJsa' (x; y), 

n'n 1 ~ ' I 1'\ 'I Q.'asa'(x; y) =-LJ gn'n(ys xcr ~,)gn'n(ysxa - Q), 
~ Q 

(10) 
In the last expressions we have written the 

Green functions for A = 0. Apparently for crystal
line systems with a center of inversion the term 
Qn'n(x, j) vanishes, as we shall assume in the fol
lowing. If the impurities are randomly distributed 
we must average over their positions. Assuming 
that we can average independently the functions r 
and the factors Q and B w~ get a~in the set of 
Eqs. (9) but with functions Q and B instead of the 
functions given by (10). 

In the present paper we restrict ourselves in 
the following to the case of pure substances and 
substances containing non-magnetic impurities. 

We must supplement the set of Eqs. (9) with the 
Maxwell equation 
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rot rot A = 4rcc-1j, (11)* 

where we get easily for the current j(x) the ex
pression 

e ~ ~ ~ n'm' 
j" (x) =- LJ .LJ LJ {ls'se<C<' (x; kl) 

2 n'm' crc.'ss' l 

n' ( 2ie ) •m' 
X r.,.(x) V1+-Al(x) fc.a' (x)+c.c.}, 

l1 eli 
(12) 

tl1ffl1 1 "" ~ t I I 
ls'sC<c.'(x; kl) =- L.J LJ J dydy (y - x) 

p Q mncr 

(13) 

where vk(x) is the electronic velocity operator. 
Apart from expression (12) there is a second con
tribution to the current j which does not vanish 
for crystalline systems. For systems with an in
version center this term is apparently zero and 
we have therefore not written it down here. 

We finally give an expression, which we need in 
the following, for the difference in the thermody
namic potentials for the superconducting and the 
normal states for small values of the quantities r. 
To do this we must use Eqs. (8) and differentiate 
with respect to the coupling constants Vnm(x). We 
get 

! "" ~ r nm pnpp•mp' ]* 
Qs- Qn = - 4 2J LJ J dx [Bcre c.'•'"~ a'W (x) 

p nmpp'ee'aa'~Waa' 

(14) 

If there are impurities we must, as mentioned 
above, average over their positions in Eqs. (12)
(14). The formulae given by us will be used in the 
following for a study of systems with impurities. 

In the present paper we shall first consider the 
case of pure superconductors. We can then intro
duce appreciable simplifications but even in this 
case we cannot completely finish the calculations 
because of the band character of the electronic en
ergy spectrum. We can perform the calculations 
if we replace the rapidly oscillating functions 
11/Jnk(x) 12 under the summation sign by their aver
age value 1/V. If we make this approximation we 
can, of course, only obtain qualitative results for 
the two-band model. In this approximation Eqs. (8) 

become 

• ~ [. Rn ( 2ie )2 fm (x)=LJVnm On+- V+-A(x) 
6 eli , 

n 

(15) 

*rot= curl. 

where 

1 ( k2 ) 
Nn=2n2 VEn(k) It~· (16) 

Moreover, we get instead of Eqs. (12) and (14) 

he~ [ 4e · 
j(x) =3LJRn -eli A(x)lfn(x)l 2 -i(fn*(x)Vfn(x) 

n 

(17) 

Q.- Qn =- ~ ~ Bn ~ lfn(x) r•ax. (18) 
n 

3. STUDY OF THE VICINITY OF THE UPPER 
CRITICAL MAGNETIC FIELD OF PURE 
SUPERCONDUCTORS 

Abrikosov[ SJ has shown that in magnetic fields 
above the lower critical field Hc1 but below the 
upper critical field Hc2 (Hc1 < He < Hc2) there ap
pears a mixed state characterized by a periodic 
structure of the magnetic field distribution and by 
the existence of maximum-field-strength fila
ments. 

For a study of the immediate neighborhood of 
the upper critical field (H ..:S Hc2) we follow 
Lasher[BJ and change to dimensionless quantities: 

( eB Rn )''• r n (x, y) = 6nch Bn '¢n.(u, v)' 

1 ( ehB )''• A(x, y) =- - a(u, v), 
2 ne 

( neh )'" (x, y) = -;B '(u, v). (19) 

Instead of the quantities V nm we also introduce 
new coupling constants Vnm= 

_ eB ( Rn Bm)'f• 
Vnm = Vnm 6nenRn RmBn ' (20) 

and also 

(21) 

where B is the magnetic induction (directed along 
the z axis): 
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B 
B = (rot,A (x, y)) =- (rotza(u v)) 

2:rt ' ' 

(rotz a(u, v)) = 2:rt. (22) 

We write the vector a as a sum: 

a= ao+ ap(u, v), (23) 

where 

ao = (0, 2:rtu, 0), rotao = 2:rt, (23') 

so that 

(rot ap) = 0. (24) 

In the new notation the electrodynamic equations 
become 

n 

4:rte2 R 2 
rot rota= g---;;2 ~ Bn ['ljln*(-iV- a)'ljln +c.cJ, 

n n 

diva= 0. 

We introduce the zeroth approximation wave 
function cp~: 

n 

(26) 

(27) 

where A is the dimensionless upper critical field: 

A= He2/ B, 

determined from Eq. (27): 

(28) 

Hc2 = 3 cit In 1._ ( q{ + q2e- !!__) 
e ~c a 

X [Pt"(VuNtfa- q2e) + P2°(V22N2/a- q1e)]-t, (30) 

where the quantity T c and the parameters a and 
b are defined as follows: 

b = V11N1 + V22N2, a = N1N2 ( Vu V22- V12 V21), 

1 - VuNtqte- V22N2q2c + q!"q2ca = 0, 

Pic = Pi I T=T • 
c (31) 

Apart from the definition of Hc2 we introduce 
an expression for the thermodynamic critical field 
He[ 11 which is necessary for the following: 

Hc2 = 32:rta (ln~)2 [Nt + N2 (V2tNt/a)2 12 
n(3) Pe2 ~e (q2c- VuNt/a)2 

[N + N (V:uNtfa)4 ]-t 
X 1 2 (qzc- VuNt/a)4 . 

(32) 

Let us now turn to Eqs. (25) and (26) and let us 
consider the next approximations for the function 
1/Jn and for the vector potential a. To do this we 
introduce a small parameter E = A - 1 ~ 0 in ac
cordance with the fact that we are studying the im
mediate vicinity of Hc2• We introduce the notation: 

p = iV + ao, p* = -iV + ao, P± = Pu + ipv, 
(1- Vu((Jt- 2:rtA)] [1- V22(Q2- 2:rtA)] 

after which Eqs. (25) and (26) become 

(28') '¢m*+ ~Vnm[p*2 +2:rt(A.-1)-Qn]'¢n° 

The general solution of this equation has the form 

where 

<{Jm (u, v) = Cm<p (u, v), 

00 

<p(u, v) = ~ d8e-iksv exp {- :rt(u- ks/2:rt)2}, 
s=-oo 

(Qt- 2:rtA) V12 

1- V2z(Q2- 2:rtA) 

(29) 

(29') 

The quantity A vanishes at the critical tempera
ture. Retaining only terms linear in ln (T c/T) we 
get from (28') the equation 

n 

n 

4:rt e2 Rn2 
rotrotap = -g~ ~ Bn ['¢n*P'¢n+ c.c.]. 

n 

Moreover, we expand in terms of E: 

'¢n * = e'1•cpn • + e'1'Xn * + · · · , 
ap =eat+ e2a2 + ... , (il"otai) = 0. 

In the first approximation we then get 

n 

= ~ V nm [2:rt -I <fJn 12 - 2atp*] Cfln •, 

n 

4:rt e2 ~ Rn2 • 
rotrotat = --9 _ _,_ LJ-B [<pn P<fJn + c.c.]. 

c2· n' n 

(34) 

(35) 

(36) 
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Using the property that !J.f = A/o + r:h~h. A/o = B2/8n, 

(37) B2 1 + a(2xr- 1) 
A/2=---~----~. 

8n [1 + cr(2x12-1)]2 
(45) P+<Jln (u, v) = P-*cpn • (u, v) = 0, 

we get from the second of Eqs. (34): 

4ne2 R 2 
rot, at = --9 2 ~ ;; (I Cfln 12 - <I {jln 12>). 

C n n 

Using these results we get for the external mag
(38) netic field He 

Using (27) and (35) we get from the first Eq. (34) 
the condition 

1l 

Using the equation 

(at{(jlnp*<pn• +<Jln*P<pn)> = <I<JJnl 2 rotat) 

and Eq. (38) we can write (39) in the form 

< 4n e2 Rm2 

~ 2nlcpnl 2 -lcpnl~ +g-& ~ Bm 
n m 

(40) 

We introduce the notation 

I Ctj 2< I cp 12> =No, I Ctl~< I cp 1~> = No2r:J, 

~ ;;2 1Cnl2r = 1Cd 27Br (r = 1, 2), 
n n 

n 

(41) 

Condition (40) leads to the following expression for 
the number of superconducting electrons N0 in the 
first band: 

(42) 

We introduce the following expression for the 
free energy of the system: 

where 

Be 
H,(xy) = B +--rot,at 

2n 

(43) 

(44) 

Using the fact that (curl az) = 0, the approximation 
( 44) turns out to be sufficient to evaluate the quan
tity ~f up to terms of second order in E: 

Hence we have 

(47) 
The magnetic moment of the system has the form 

M= B-He Be 1+cr(2x22-1) 
4n =- 4n [1 + a(2x12- 1)]2 

(Hc2 -He)[1 + cr(2x22 -1)] 
=---:-~,.--:-:---::---------

4ncr{2(2xt2- 1)- (2x22- 1) + cr(2x12- 1)2] 

(48) 

We finally write Eq. (44) for the acting magnetic 
field H in the most convenient form 

Putting T = Tc in Eq. (29) we get 

-=-
Ct v2 (q2c- V11Nt/a) ' 

whence we get, using (41) and (33) 

2x22 IT=Tc =(Hc2/Hc) 2 > 1. 

(50) 

(51) 

This last inequality is the condition for type II su
perconductors. One sees easily that from the fact 
that N0 must be positive, a> 1, and M must be 
negative, and from condition (50) we also get the 
inequality (Hc2 > He): 

2xi-1 
a >2 2 1 cro, r:Jo 

Xt-

(52) 

Let us return to Eq. (45) for ~f and study the 
way the function 

. ( ) 1 + a ( 2x22 - 1) 
X a = -::-:----:-----:':---_:_ 
· [1+cr(2xt2-1))2 

(53) 

depends on a. Clearly, the quantity ~f will have 
its smallest value for that value of the parameter 
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a for which the positive function X has a maxi
mum. This value of a will be realized in the su
perconductor. When a= a0 the derivative of the 
function x vanishes, while X' < 0 for a > ao and 
x' > 0 for a < a0• Thus, when a0 < 1, i.e., when 
KJ > 1 for any K~ > t;2 or, when 

1/z < Xt2 < 1, xz2 < Xt2 I 2(1- Xt2), (54) 

the function X decreases in the region a > 1 of in
terest to us, and the smallest value of the free en
ergy corresponds thus to the minimum value of a. 
According to [ 71 a "'" 1.16 and the magnetic field 
distribution is characterized by a triangular lat
tice. 

When a0 > 1, i.e., when the inequalities 

1/z<Xt2 <1, xz2 >xt2 /2(1-x!2), xz2 >xt2 (55) 

are satisfied, a must, according to (52) remain 
larger than the quantity (2K~- 1)a0/(2KJ - 1) (which 
is larger than unity). If this last quantity is, for 
instance, equal to 1.18, a square magnetic lattice 
will be realized in two-band superconductors 
satisfying conditions (55). 

We have thus shown that in two-band supercon
ductors the symmetry of the magnetic lattice de
pends on whether inequalities (54) or (55) are 
satisfied, i.e., on the parameters of the system. 

Using (41) we can show that 

x22 (1-,;)(1-1Cz/C!I 2)IC2/Cd 2 (56) 
X!2 = 1 + (1+,;1Cz/C!I 2)(1+1Cz/C!I 4), 

where 

(57) 

In the case where the second band (for instance, 
a d band) is narrow (N2 » Nit m2 » JEt),_ T < 1 
and K2 can thus be larger than K1, if Cz/Ci < 1, and 
less than K1 when Cz/Ct > 1. A study of the proper
ties of the quantity (50) shows that for well-deter
mined relations between the constants V ij and the 
densities Ni both these possibilities are admissi
ble (so far their exact values are not yet known). 

In conclusion we note that according to (49) the 
maximum value of the magnetic field H(x, y) which 
is observed in points where the density of super
conducting electrons vanishes, I cp 12 = 0, is equal to 

H _ H _ 2(Hc2- He) (xz2 - Xt2) 

zmax- e 2(2x12 -1)-(2xz2 -1)+::r(2Xt2 -1) 

(58) 
In the single-band case Kt = Kz and Hz max 

=He. In the two-band case K2 can only be equal to 

Kt if Cz =Ct. If Kt is not equal to Kz the maxi
mum magnetic field (the field of the normal sub
stance filaments) differs from the external field 
He· 

4. STUDY OF THE PROPERTIES OF SUPER
CONDUCTORS WITH LARGE CONCENTRA
TIONS OF NONMAGNETIC IMPURITIES 

In this case we get by averaging the basic quan
tities and the equations of·Sec. 2 over the impurity 
positions and summing over the spin indices 

• ~ "" { * Rn'm fn (x)= LJ Vmn,Lj Qn'mfn, (x)+-6-
nt n' 

( 2ie ) 2 
X 1. V +-A fn,*(x) ' en 
- ~ sa (n'm' 1 np) r n: (x) rv (x) r;,... (x)}. 

m'p 

ie "" [ ( 2ie A) , • ( ] j(x)=3LJ Rnmfn(x) V+dl lm x)-c.c., 
nm 

(59) 

where, for instance, 

1 "" n'mn'm Qn•m=2 LJ (Qs'asa' (x))g,,•ga'a. 
ss'aa' 

, , 1 ~ n'mn'pm'pm'rn sa (n m Imp) = 2 LJ <Bs'a soc' {3oc Wa' )g,,.g,_,_•gwga'a· 
ss'a..a.' 
{3{3'oa' (60) 

The coefficients Rnm are defined in an analogous 
way in terms of the Qnmnm (x, j l) and similarly 
we establish a connection between the averages of 
the quantities (13) and the Rnm. The bar over the 
quantities indicates an averaging over the impuri
ties and the ( ) sign indicates averaging over the 
coordinates x. 

In the limit of high concentrations of non-mag
netic impurities ( p » 1) calculations lead to the 
following results: 

( 2y~/i(t); )· £; = ln \ :rt , 

~ n ( 1 1 ) p=-- -+-. 
:rt 2 ,;12 "t21 ' ' 

R = 3\;(2) (1) 2 N1Vt2V2 + N2vlv1 + VjVz(NiJ.t12 + .I\"2J.tzt) 
4 n (N1 + N2}[V1V2- J.t21J.t!z] 

(61) 
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where 

p h 
J.Lnm=--

n 2Bnm' 
Vi = Pii- J.Lii + p;, 

p h 
p;;=-

n 2Tii ' 

p h 
Pt=--

n 2Ttz ' 

p h 
P2 = --- · (62) 

n 2Tzt 

The relaxation times T ij have been determined 
before. [ 12 l The quantities eij differ from the T ij 
by the presence of cos e under the integral sign, 
where e is the angle between the vectors ki and 
kj· The coefficients Qnm which we have not writ
ten out can be obtained from the coefficients given 
here by interchanging in them the indices 1 and 2. 

In Eqs. (59) we use the equations 

(63) 

to change to new functions r and 6JJ. We then get 

(64) 

(65) 

j= ~ R(Nt+N2)[r(x)(v+~~ A)r•(x)-c.c.J, 

(66) 

where 

Using the definition of the critical temperature Tc 
we get in this limiting case of high impurity con
centration 

J sm0 • 

(67) 

We change to dimensionless variables 

x=x'x -In-( 6 ~ ) ,,, 

\ R ~e ' 

eft ( 6 ~ )'" A=A'- -In-
2e R ~e' ' 

n ( 8 \ •;, ( ~ ) •;, 
f(x) = (3:- n(3)) , In~ ID(x'). (68) 

We obtain instead of Eqs. (64), (65) the following 
set: 

, , , ., , i ( V' V' ' 
rot rot A = J (x ) =- ID-a>+ -a>+- a>) 

2 \ X X 

-A'(x') I<DI2, (69) 

where 

(70) 

In the case of a large concentration of non-magnetic 
impurities the Ginzburg-Landau equations of the 
two-band model reduce thus to Eqs. (69) of a 
single-band model, but the magnitude of the criti
cal temperature T c and the parameter K depend 
in an essential way on the two-band character of 
the system. 

We also give Eq. (14) in the limiting case of 
large impurity concentrations which we are con
side ring: 

HZ 
Q.- Qn =- _c \ !Q>(x) ! 4dx 

8n J ' (71) 

where 

He2 4 ( n )2 ( ~ )2 - =-- -- (Nt+N2) In-
8n n(3) ~e ' ~e 

(72) 

When there is a magnetic field present we must 
clearly add to expression (71) the energy of the 
field 

\ 92 92 
.l-dx =-0 ~ H'2dx 

8n 4n · 
(73) 

It is thus clear on the basis of the equations given 
in the foregoing that for high concentrations of 
non-magnetic impurities the thermal and electro
magnetic properties of the two-band model of a 
superconductor is completely determined by the 
equations of the single-band model provided the 
quantities T c and K are appropriately defined by 
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Eqs. (69) and (70) and the density of states N is in 
the thermodynamic expressions replaced by 
N1 + N2. 
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this paper and to L. Z. Kon and M. K. Kaplazhia 
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