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A method is proposed for writing the Einstein equations in integral form by means of a co
variant Green's function which is a two-point tensor. This approach includes a natural way 
of eliminating the difficulties associated with the nonlinearity of the Einstein equations. With 
a definite choice of the equation for the Green's function the integral form of the equations is 
a covariant way of writing Mach's principle, which is now equivalent to the requirement that 
the Einstein equations be valid not in differential form but in integral form. A number of ex
amples are considered. In particular it is shown that the Friedmann model of a homogeneous 
and isotropic universe is incompatible with Mach's principle, because of the behavior of the 
metric near a singular point which is characteristic of this model. 

1. INTRODUCTION 

MACH'S principle in its simplest form asserts 
that a statement about an acceleration has meaning 
only when we specify relative to what the accelera
tion occurs. A conclusion from this is that all 
inertial effects arise owing to accelerations rela
tive to the system of remote galaxies. There have 
been repeated attempts to formulate in the frame
work of general relativity theory a principle ac
cording to which the local inertial properties of 
matter are determined by the distribution of matter 
in the Universe. The relevant bibliography, and 
also a survey of the difficulties that arise, can be 
found in a recent review volume. [ 1] 

In the present paper, starting from the qualita
tive formulation of Mach's principle given by 
Einstein [2 J: "The whole inertia, that is the entire 
field of the gik• is determined by the distribution of 
matter in the Universe," we propose writing the 
Einstein equations in integral form in such a way 
that by the use of a covariant bitensor retarded 
Green's function the value of the metric tensor gik 
at a given point is determined by the distribution 
of the matter energy-momentum tensor Tik in all 
space. The Mach principle then simply means the 
requirement that the Einstein equations be valid 
not in differential form but in the integral form. 
This formulation is essentially a covariant method 
for imposing definite boundary conditions on the 
solutions of the Einstein equations. The large de
gree of arbitrariness in the choice of the equation 
for the Green's function is to a large extent re
moved by the condition that in the limiting case of 

small deviations hik from the Minkowski metric 
g{~ the exact integral expression is to go over into 
the formula of Thirring and Einstein for the Mach 
principle[2•3J: 

which is written in the coordinate system defined 
by the relations 

(2) 

In the Appendix the gravitational field of a hol
low cylinder rotating in empty space is found and 
it is shown that if the linear mass density f.L of the 
cylinder satisfies the relation 

2kc-2!l = 1, (3) 

then in the internal region, free from Coriolis 
forces, the coordinate system always turns out to 
be that in which the cylinder is at rest. In Sec. 3 
the condition (3) on the mass of the cylinder is ob
tained from the proposed covariant formulation of 
Mach's principle. In that section we also consider 
a number of cosmological models. The integral 
formulation of the Einstein equations at once ex
cludes the "non-Mach" cases of empty and asymp
totically flat space. Also in contradiction with it is 
the Friedmann model of a homogeneous and iso
tropic universe (open, closed, and flat), owing to 
the behavior of the metric near a singular point 
which is characteristic of this model. A model con
sistent with the Mach principle is the Einstein 
model of a static closed world, but this model is 
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of only mathematical interest, since it holds if a 
nonphysical cosmological term is included in the 
Einstein equations. 

2. INTEGRAL FORM OF THE EINSTEIN EQUA
TIONS 

The following formula is a mathematical way of 
writing the qualitative formulation of the Mach 
principle which was given in the Introduction: 

Bnk r all -- (4) 
gil,(x) = - 4 .) Gil, (x, y) Tap(y) l'- g(y)d~y. 

c 

Here GfJ'<x. y) is a retarded tensor Green's 
function in the space defined by the metric gik)4•5J 
It is a two-point tensor-i.e., the indices i, k refer 
to the point x and the indices 01., {3 to the point y. In 
what follows it is understood that Latin letters re
fer to the point x and Greek letters to the point y. 
All indices run through the four values (0, 1, 2, 3) 
if there are no special stipulations. 

We adopt the following general form of the co
variant equation which the Green's function is re
quired to obey: 

mnpq ajl Bmn )G"Il ) Ail, (x) Gmn; pq (x, y) + ik (x mn (x, Y 

(5) 

Here the semicolon denotes the operation of co
variant differentiation; o(x- y) is the four-dimen
sional Dirac delta function; o? is the Kronecker 
symbol, which is well defined, since in the right 
member of (5) x = y; and A( .... ) and B( .. ) are ten-

( .. ) ( .. ) 
sors which so far are arbitrary. 

In order for the relation (4) to be an integral 
form of the Einstein equations[sJ it is necessary 
that 

B';'J: gmn = Rik - 1/zgikR. (6) 

This still does not determine the tensor Bren 
uniquely. We choose it in the following form 

B'.('~ = R'.('~ -1/sR(g;gmn- b;m b~tn). (7) 

It follows from the result of Item D of Sec. 3 
that the Riemann tensor Rfk~ must appear in the 
equation for the Green's function. We shall show 
that the differential term in the equation ( 5) for the 
Green's function is almost uniquely determined by 
the condition that Eq. (1) must be a consequence of 
(4) and (5). To do this we carry out a small varia
tion of the energy-momentum tensor and the metric 
tensor, consistent with the Einstein equations and 
the condition ( 4) : 

T;~t-+ T ik + bT;~t, g;k-+ g;k + h;~t. 

This sort of variation has been applied in [7 •8 J for 
integral relations containing scalar and vector 
Green's functions. 

We get from Eqs. (4)-(7) 

\ all v014v 
h;k (x) = J G;k (x, y) {Aa!l (y) hvo; "v(Y) 

+ B:g (y) hvo (y)} l'- g(y) d'y. (8) 

Here the Green's function, the tensors A~::;·> and 

B~: :~, and the covariant derivatives are defined in 

the space with the unperturbed metric gik· 
The relation (8) follows from (4) provided that 

the unperturbed metric is consistent with ( 4). It is 
obvious that empty space with the Minkowski 
metric g~~, which is the zeroth approximation in 
(1), is not compatible with ( 4). We find, however, 
that the tensor A mr~q in ( 5) is almost uniquely de
termined if we regard (8) as a relation independent 
of (4) and require that when we substitute in it 
gik = g~~ in the coordinate system defined by the 
relations (2) it must go over into (1). This proced
ure is physically entirely justified, since we can 
assume that in ( 1) the unperturbed metric is the 
correct cosmological solution, compatible with (4), 
and the variations of the metric and of the energy
momentum tensor, for which (1) holds, are taken in 
a region of space small enough so that it can be 
regarded as approximately flat. 

It is well known[sJ that for the case considered 
the variation of the Einstein equations gives in the 
coordinate system (2) 

(9) 

The expression (1), which is the integral form of 
this differential equation, can be rewritten in the 
following form: 

- 1/z(h;~t - 1/2g~~ hmm) = Bnk r S(x,y)bT;~t(y)d4y, (lO) 
c4 .) 

where S(x, y) is the retarded scalar Green's func
tion in flat space with the Minkowski metric and 
obeys the equation 

g(0JPqS; pq(x, y) = b(x- y). (11) 

In order that Eq. (8), with gik = gi~ in the coordin
ate system (2), be equivalent to Eq. (10), it is 
necessary that 

(13) 
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Here ;\ is a constant whose value is determined in 
paragraph D of Sec. 3 from a consideration of the 
problem of the cylinder (;\ = 2). 

Comparison of (12) with (9), and also of (13) 
with ( 5), ( 11) enables us to find the tensor A~pq, 
and when we also use (7) we can write the equation 
for the Green's function 

(14) 

(here Ox is the covariant d 'Alembertian operator 
acting at the point x). From this it is easy to get 
the boundary condition imposed on the Einstein 
equations by the integral form ( 4) : 

~ [g .. v(y) Gil,~; "(x, y)]; v l'- g(y)d4y = 0, (15) 

or, when we take into account the retarded charac
ter of the Green's function, 

lim~ G;k~; "(x, y)gJJ.O(y)i- g(y)d3y = 0 (16) 

for y0 - -oo (or at the initial time in a cosmological 
model). 

3. EXAMPLES 

To test the compatibility of some known solu
tions of the Einstein equations with the condition 
(4) there is no need to solve the equation (14) for 
the complete Green's function. We shall show how 
use of the symmetry properties of a concrete model 
decidedly simplifies the problem. If we introduce 
a notation for the right member of ( 4) 

8n:k r a:ll -- (17) 7 J G;k (x, y)Ta:p(y))'-g(y)d4y === b;k(x) 

and use ( 14), assuming that ( 4) is not satisfied, then 
we get a linear differential equation with a source, 
satisfied by the tensor bik: 

A,-i 0 (bik - 1l2gil,b:::) 

+ [R/\ ~ - 1lsR(g;kgmn- 6f'cs:)J bmn 

X= 8n:kc-4T;k. (18) 

The coefficients of this equation depend on the 
metric gik(x). If the metric gik satisfies the 

· Einstein equations, then bik = gik is the solution of 
( 18). The condition ( 4) means that this solution is 
the retarded inhomogeneous solution of the system 
of equations (18), and imposes definite boundary 
conditions on the metric. According to (17) the 
symmetry properties of a given metric make many 
properties of the tensor bik obvious from the start. 

This allows us to make considerable simplifications 
in the system of equations ( 18) and to write its in
homogeneous solution, using a simpler Green's 
function. 

For example, in the case of a constant gravita
tional field it is obvious from ( 17) that the tensor 
bik does not depend on the time. The system (18) 
then becomes simpler, since all derivatives with 
respect to the time drop out, and the inhomogeneous 
solution bik = gik can be written by means of the 
Green's function D~/(x, y) in three-dimensional 
space. The corresponding boundary condition is of 
the form 

,\:, oD;A~(x,y)_g .. v(y)y-g(y)d/O'Y=O. (19) 
'f oy" . 

Here the integral is taken over a surface inclosing 
the entire three-dimensional space. 

A. The simplest case to consider is that in which 
the matter is located in the finite region of space. 
Then at large distances the metric is spherically 
symmetrical and goes over into the flat metric. 
The boundary condition ( 19) can be rewritten in the 
following form: 

. [ iJD;kU...(x, y) --] 
hm g11 (y))'-g(y) = 0, 

r ....,., or 
y 

(20) 

where ry = y1 is the radial coordinate of the point y. 
To verify (20) it is necessary to know the 

asymptotic behavior of the Green's function for 
large magnitudes of y. It is clear without calcula
tion, however, that in the asymptotically flat region 
the components of the Green's function obey the 
ordinary Laplace equation, and therefore are pro
portional to 1/ry. Since in this region g11 = 1, 
(-g) 112 ~ r~, we see that, as was to be expected, 
the left member of (20) is equal to a constant, and 
is in general different from zero. 

B. Let us consider the isotropic model of a 
static closed world[2] with the interval 

-ds2 = -c2d-r2 + r2(sin2 8d<p2 + d82) 

+ dr2 I [1- (r I a)2], 

where a is the constant radius of cuvature. 

(21) 

If we choose as the origin of coordinates the 
point of the three-dimensional hypersphere to which 
the surface integral (19) contracts, then in the 
"asymptotic region," i.e., for ry- 0 (sic), as in 
the preceding case, g 11 = 1, (-g)1/2 ~ r~. The 
boundary condition (19) is written the same as in 
(20), except that now the limit for ry - 0 is to be 
taken. It can be seen from this that (19) can be 
violated only if the Green's function has a singu
larity at ry = 0. This is impossible, however, 
since the source in the equation for the Green's 
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function is at y = x, i.e., at the opposite pole of the 
hypersphere. In fact, according to (21), the metric 
near the point ry = 0 is such that the system of 

equations for Df/(x, y) in this region contains 
terms with the ordinary Laplace operator and also 
terms associated with the curvature. The solution 
of the Laplace equation which is homogeneous at 
the origin is a constant. The presence in the equa
tion of terms associated with the curvature does 
not change the good behavior of the Green's func
tion at the point ry = 0. Accordingly, the model in 
question is compatible with the boundary condition 
(19), i.e., we have shown that for the proposed 
formulation of Mach's principle Einstein's asser
tion that this model is compatible with Mach's ideas 
is correct. 

C. From the point of view of the boundary con
dition (16) the closed, open, and flat models of a 
homogeneous and isotropic universe are equivalent, 
since the behavior of the metric near the singular 
point is the same for all of them. Therefore we 
can consider the simplest case of the flat model 
with the interval 

-ds2 = -c2d"C2 + a2(1:) [ (dx1)2 + (dx2)2 + (dx3)2). (22) 

If near the singular point the equation of state is 
of the form 

p = ae, 

where a is a constant, then 

(23) 

a(1:) = const·"C2/3(1+al. (24) 

By the definition ( 17) of the tensor bik and from 
considerations of symmetry of the given problem 
we have 

bil, = o I for i ,p k; ab;" I axn = o (n = 1, 2, 3). (25) 

For the metric (22) we can separate out from the 
system (18) two equations for the functions 

U1(1:} = bo0 - 1/zbm"', U2{-t} = bmm· (26) 

Carrying out the calculation with the use of (25), 
we get 

.. 3a . a2 1 
U1 +-U1-(A. +8)-Ui+-(A. -4) 

a a2 2 
0,2 Snk 

X --U2= -A.--To0, 
a2 c2 

3a (a a2 ) 
U2+-tl2-A. -+2- U2 a , a a2 

(a: a2 \ 8nk 
+2A. ---1 U1= A.-Tmm 

\a a2 , c2 
(27) 

The dot denotes differentiation with respect to the 
proper time T. Since when the system (18) is 
written for the tensor bf a particular solution is 

bf =of, we see by (26) that a particular solution of 

(27) is U1 =-I, U2 = 4. In the present case the 
fundamental condition (4) means that this particu
lar solution must be the retarded inhomogeneous 
solution. Writing it out by means of the retarded 
Green's function of the system (27), expressing the 
sources from the equations, and integrating by 
parts, we get in the usual way the boundary condi
tion 

lim{_!__ (V~1 -- 4Vs2)-~ ( Vs'- 4Vs2) .} = 0 
~~o d1: a 

for all £ = 1, 2, 3, 4. (28) 

Here v~· 2 are four linearly independent solutions of 
the homogeneous system of equations adjoint to 
(27), which determine the behavior of the Green's 
function with respect to its second argument. By 
substituting in these equations the a( T) from (24) 
we can find these solutions in explicit form. They 
have a power-law dependence on T, and a simple 
calculation shows that the boundary condition (28) 
is not satisfied for any value of the constant A, nor 
for any value of a in the equation of state (23) of 
the matter. (Except for the case a - oo, which 
means that there if an incompressible "core.") 

D. It can be shown that the metric of the prob
lem of the cylinder, analyzed in the Appendix 
[see (A .4) -(A. 7)], is incompatible with the integral 
form ( 4) of the Einstein equations, i.e., with the 
boundary condition (19). In this problem, however, 
we have considered only a special version of the 
Mach principle, implying that in the coordinate 
system in which the interval is of the form (A.1) 
the g02 component of the metric tensor must be 
uniquely determined by specifying the angular 
velocity of the cylinder. According to the Appendix, 
a requirement for this is that the linear density of 
the cylinder satisfy the relation (3). We shall show 
that if the constant A in (14) is equal to two, then 
this requirement is contained in the integral condi
tion (8) for an infinitely small variation of the 
metric h02 caused by slow rotation of the cylinder. 

Denoting the right member of ( 8) by bik(x) , we 
get for this tensor a system of differential equa
tions analogous to the system ( 18) for the tensor 
bik• but with a different source. We write out the 
equation for the mixed component b~ in the external 
region. The operations of raising and lowering 
indices and of covariant differentiation, and the 
Riemann tensor, are determined for the metric 
(A.4) -(A.6). We have 

d'£62° ( 1- 2a) db2° 
---· 

dr2 r dr 

( a2 \ ( A. ) l)2o ( r )-a+a'/2 
+ 1--al 1-- -=A. - Q2° 

, 2 J 2 r2 ' , r0 • 

(29) 
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Here ~ is the mixed component of the expression 
in curly brackets in the integrand in (8). By defini
tion 'bg = hg is a particular solution of (29). Accord
ing to (A.2) or (A.7), for r > r 0 the component hg of 
the metric is constant. 

The integral condition (8) implies that this par
ticular solution must be an inhomogeneous solution 
of Eq. (29). The final form of the corresponding 
boundary condition cf. (28) is 

z-1 
limJz;+1-2a)r; =0 (;==1,2). (30) 
T-+00 

The index~ numbers the linearly independent solu
tions of the homogeneous equation adjoint to (29). 
The solutions of this equation have a power-law de
pendence on r. The following expression is obtained 
for the power-law index z~: 

z1,2=a± [(1-a)2·+ (1-A./2)(a-a2/2)]''•. (31) 

It is easy to see that the condition a= 1, i.e., 
the relation (3) for the linear mass density of the 
cylinder [cf. (A.3)], follows from (30) and (31) for 
A = 2. We note that even when (3) is satisfied the 
relation (8) does not hold for the problem in ques
tion. In fact, for A = 2 and a= 1 the two linearly 
independent solutions for which (30) holds become 
degenerate [cf. (31)]. There is then a new indepen
dent solution of the homogeneous equation adjoint 
to (29), which also determines the behavior of the 
Green's function of Eq. (29) with respect to its 
second argument, but for which the corresponding 
boundary condition is not satisfied. 

The examples analyzed in this section (A, B, D) 
are mainly of an illustrative character. According 
to Sec. 3C, Mach's principle in the form (4) is not 
satisfied for the Friedmann model of a nonstationary 
isotropic universe, if a physically acceptable equa
tion of state of the matter is prescribed near the 
singularity. It must be pointed out, however, that 
the compatibility of a given model with Mach's 
principle is determined by the behavior of the 
metric in the neighborhood of the singular point 
only [cf. ( 16) ]. No restrictions beyond the Einstein 
equations are imposed on the behavior of the metric 
at later times. In particular, the Friedmann model 
is compatible with Mach's principle if near the 
singularity we assign a nonphysical equation of 
state corresponding to the presence of an incom
pressible "core." The question remains open as 
to whether, for physically admissible equations of 
state of the matter, there do exist any solutions of 
the Einstein equations compatible with (4) and (14). 

I express my gratitute to L. L. Regel' son, who 
called my attention to this problem, and also to 
P. L. Vasilevskii' for many fruitful discussions of 
the question. 

APPENDIX 

For a cylindrical geometry with a stationary 
metric with the coordinates 

one can always choose a reference system so that 
the interval is of the form 

-ds2 = g00 (r)c2d-r2 + gu (r) (dr2 + dz2) + g22(r) dcp2 

(A.1) 

Let there be located at r = r 0 an infinitely thin 
heavy cylinder with finite linear mass density J.l.. 

The cylinder in general rotates with an infinitely 
small angular velocity w relative to the system of 
coordinates defined by Eq. (A.2). The component of 
the metric tensor g02 = h02 is also small. 

In empty regions the solution of the Einstein 
equations for the metric (A.1) can be found in gen
eral form. At r = r 0 one imposes the condition that 
the components of the metric tensor be continuous. 
On passing through the cylinder the first deriva
tives of gik with respect to r have discontinuities. 
The values of the discontinuities are determined 
from the Einstein equations, accoraing to which the 
second derivatives of the components of the metric 
tensor at r = r 0 are proportional to the energy den
sity E-i.e., they become infinite. For consistency 
of the Einstein equations it is necessary to impose 
the condition that the pressure be finite at r = r 0• 

We choose the rotation of the coordinate system 
in such a way that there is no Coriolis force in the 
external region, i.e.,[G] 

-ho2 I goo = const for r > ro. (A.2) 

Such a coordinate system is admissible for arbi
trarily large r. 

In the final result, which is presented below, the 
metric is expressed in terms of a dimensionless 
parameter a, 

a== 2kc-2f..t, (A.3) 

and the angular velocity w of the cylinder. For 
r > r 0 we have 

goo= -(r I ro)a, (A.4) 

gu = g33 = (r I r0)-a+a'i2, (A.5) 

g22 = ro2 (rlro) 2-a, (A.6) 

hoz = !Jro2goo I c. (A. 7) 

For r < r 0 the diagonal components of gik are 
obtained by replacing a - -a in E qs. (A .4) , (A. 5) , 
and (A.6). In addition we have 
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ho2 = --Qg22 I c, r < ro; (A.8) 2 A. Einstein, The Meaning of Relativity, Prince-

Q = Zaw 1 (i +a). (A. 9) ton University Press, 1965, Chapter IV. 
3 J. A. Wheeler, Gravitation and Relativity (ref-

According to (A.8), in a new reference system 
defined by the transformation cp' = cp - QT the me
tric is static in the interior region, i.e., 

r < r 0• 

In this problem Mach's principle is satisfied for 
the rotational motion if in the new system of refer
ence the cylinder is necessarily at rest, i.e., if 
Q = w; from this there follows the relation (3) of 
the main text [cf. (A.3) and (A. 9)). 
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