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The problem considered is that of local magnetic excitations in antiferromagnetic crystals 
with a single impurity center. A general solution is given for the problem of oscillations of 
the spin system of an antiferromagnetic crystal containing a magnetic impurity atom. It is 
shown that the Green function of such a crystal satisfies Dyson's equation and can be ex­
pressed in terms of the Green function of an ideal crystal. Expressions that determine the 
local impurity levels are obtained. It is established that some of these local levels can have 
a value less than the spin-wave gap in antiferromagnets. 

IT was first shown by I. M. Lifshitz[t] that in where the n-summation is over all the sites of the 
crystals containing impurity atoms, local levels lattice, the .to-summation is over the sites nearest 
can appear. These papers gave a method of treat- to the given one, the index 1 refers to the impurity, 
ing such problems and investigated in detail the and S~ is the spin operator of the impurity site. 
local levels that arise on the phonon branch of the The first term in (1) describes the exchange inter-
spectrum. Recently, Lifshitz's idea has been ex- action in an ideal crystal; the first and second 
tended to crystal-excitation branches of other types. terms together give the exchange interaction in a 
For example, a number of papers have considered crystal in which there is no magnetic atom at all 
the problem of oscillations of the spin system of on site 1; the third term is the exchange energy 
a ferromagnetic crystal that contains a magnetic between the impurity atom and the others; the 
impurity atom [2- 51 • fourth term describes the lilagnetocrystalline-

The present paper considers the problem of the anisotropy energy of the ideal crystal; the fourth 
occurrence of local magnetic levels in antiferro- and fifth together give the anisotropy energy when 
magnetic crystals containing a magnetic impurity there is no magnetic atom on site 1; the sixth 
atom. describes the anisotropy energy of the impurity 

1. THE GREEN FUNCTION OF AN ANTIFERRO­
MAGNETIC CRYSTAL WITH AN IMPURITY 
ATOM 
We consider an antiferromagnetic crystal des­

cribed by two magnetic sublattices, with spins 
IS 11 = IS21 = S0 and with exchange integrals J be­
tween nearest neighbors. We suppose that the 
magnetic impurity atom, with spin S' and with ex­
change coupling J' to the nearest atoms, replaces 
one of the sublattices in an elementary cell. The 
Hamiltonian of such a system can be written in the 
form 

:H = 1 ~ SnSn+6 - 21 ~ StSt+6 + 21' ~ St'SH6 
n,6 6 6 

+A~ 8~> 8~~6- 2A ~ 8tcz>8t~~ + 2A' ~s:(•>81~l 
n,6 6 A 

-~tgB.( ~ 8~> + ~8~~6) -~tB.(gSf>- g18~<z> ), 
n ~A (U 

atom. Finally, the last two terms in (1) are the 
energy of the ideal crystal and of the impurity 
atom, respectively, in the external magnetic field. 

If we take into account the antiferromagnetic 
distribution of the spins Sn, S1, and S1 in relation to 
the spins Sn+.t. and S1+.t.• then in the spin-wave 
approximation the Hamiltonian ( 1) will have the 
form 

n,A n,6 

n,A 

(2) 

Pt = (J + A)8o + g~tBz, P2 = (J + A)8o- g~tBz, 

Ps = 2(1' +A') So'- 2(J + A)So, Ps = 2J'(SoSo')''•- 2!So, 

Ps = !So, P = 2SoZ(l'- 1- A+ A') + ~tBz(g- gt) ;(2') 
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here g and g1 are the spectroscopic splitting fac­
tors for the moments of the basic and of the im­
purity atoms, J.1. is the Bohr magneton, and an and bn 
are the Bose operators of the spin deviations for 
the respective sublattices of the antiferromagnet. 

On applying the usual scheme for construction 
of a Green function[S] in the energy representation, 
we get 

where ozm is the Kronecker symbol and 

a= E + zp1, 

G11m = {az+; am), Gim = (bz; am). 

When J = J', A= A', S = S', and g = g1, the system 
of equations (3) reduces to the equations for the 
Green function of an ideal antiferromagnetic crys­
tal, that is 

( 4) 

The solution of these equations has the form 

Co2 = - Pa -_ + , 
ay +PaPa 

( 5) 

or 

czm _ __!__ ~ G eik <t-m) 
o1,2- N .LJ o1,2 . 

k 
( 5') 

Equations ( 3) and ( 4) can be written formally in 
matrix form: 

here 

(Vo + V) ( ~:) = ( ~1 ) •. 

Vo ( ~::J= ( ~1 ) ; 

Vo = ( a pa+)' 
P3- -y 

~ 0 0 . . 0 ' 0 Ps Ps . . . Ps 

000 .. 0 00 0 ... 0 
. 0 ........ . 

~-~_o_:...:..:..9_!..~_o _ _o __ ._. _ _: -~-
0 00 ... o:oo 0 ... 0 

I 

Ps 0 0 . . . 0 : 0 p 5 0 . . . 0 
' 

( 3') 

( 4') 

By use of ( 4'), it is easy to obtain the desired solu­
tion of equation ( 3') : 

When S = S', J = J', A= A', and g = g1, it is seen 
from (2) that V = 0, and it follows from (6) that 

( G1 ) = ( Go1 ) , 
G2 Co2 

that is, we get the solutions for an ideal antiferro­
magnetic crystal. 

It is easily shown that the operator V0- 1 can be 
expressed in terms of the zero-order Green func­
tions as follows: 

(7) 

In the matrix V in ( 6), the rows and columns 
enumerate the sites occupied by the impurity and 
by its z nearest neighbors. Hence the matrix V has 
dimensions (2z + 2) x (2z + 2). Since the matrix V 
acts on the matrix G0, which has dimensions 
N x N (N = number of magnetic sites), it must be 
filled up with zeros beyond the edges of the mean­
ingful square of dimensions (2z + 2) x (2z + 2). 

To find the spectrum of oscillations of the spin 
system, we use the Green function, given in ma­
trix form by expression ( 6): 

( G1) = ~ Bpm (Got) ; 
G2 tD G02 pn p 

Bpm I D = [ (1 + G0V)-1]mp, D = det 11 + G0Yj. (8) 

Since the matrix V is abridged to dimensions 
(2z + 2) x (2z + 2), the determinant D of the matrix 
1 + G0V also has dimensions ( 2z + 2) x ( 2z + 2). 

It follows from (8) that in addition to the poles of 
the ideal crystal 1) (that is, the poles of G01 and 
G02), there appear additional poles of the Green 
function. These poles are determined by the equa­
tion D = 0. 

We shall now calculate the following Green func­
tions, which are necessary for a complete analysis 
and for consideration of certain other physical 
problems in antiferromagnets: 

G3 = <{liz; am+), G, = {bz+; am+)>, 

....... I ......•.. 

p 6 0 0 . . . 0 ! 0 0 0 . . . P5 
1 )The poles of G01 and G02 determine the spectrum of spin 

waves in the impurity-free antiferromagnet. 
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It is known that G3 = G1(-E) and G4 = G2(- E). To 
calculate the remaining Green functions, we shall 
start with the equations of motion for G 5 and G6, 

analogous to ( 6): 

( Gs)=(1+GV')-t(G06 ). (10) 
Ga' Goa 

Here 

c 
Goo=- , 

cf+ Pa-pa+ 

V'= 

f=E+zp2, 

G= _ (Gos 
Goo 

-Goa) 
jc-1 Goo ' 

0 0 0 0 I 0 0 0 .0 
I 

0 Ps 0 0~ 
i 

Pa 0 0 . . o 
I • 

?---~--~0 ... _:_ :__: __ f~:- _ _p~-~-~M ~-·- :__~ 
0 -Pa-Pa . . . -Po :- ~ 0 0 . . . 0 
o o o ... ot ooo ... o 

I 
•••••••••••• t •••••• 

0 0 0 0 l 0 0 0 ... 0 

or in matrix form 

Bpm' I Dt = [(1 + GV')-1]mp, Dt = detj1 + GV'I; 

G1 = Gs(-E), Ga = Ga(-E). (11) 

We shall now analyze the energy of the impurity 
levels. For this purpose it is sufficient to know the 
specific forms of D and of Dt· 

2. SPECTRUM OF ADDITIONAL POLES OF THE 
GREEN FUNCTION 

The spectrum of poles of the Green function due 
to an impurity in antiferromagnets will be deter­
mined by the equations D = 0 and Dt = 0. In the 
case z = 2 (which is the only one we shall consider), 
these equations have the form 

a) D = 1 + ay-1p5[Got(2)- Got(O)] = 0, 
b) D = 1 + ps[Gos(2) - Gos(O)] = 0, 

c) D = [1 + ~Got(O) + 2paGod1)] 

X {1 +2p6G02(1) -ay-1ps[God0) + Got(2)]} 

- 2[psGot(O) + psGd1)] {~G02(1) -ay-1ps[Go, (0) 

+ Got(2)]} = 0, 

d) D = [1 + jc-1~G05 (0}- 2psGoo(1)] 

X {1- 2poGoa(1) - Ps[Gos(O) + Gos(2)]} 

+ 2[fc-1poGos(O) - psGos(1)] 

X {~Gos(1) + pa[Gos(O) + Gos(2)]} = 0. ( 12) 

Here we have used the relations 

Go(O) = Go11 = Go22 = Go33, 

Go(1) = Got2 = Go13 = Go2t = Go3t, 

Go (2) = Go23 = Go32, 

which follow from the symmetry of the linear 
chain. To simplify the analysis of the formulas ob­
tained, we set H = 0; then 

a = f = E + 2p, y = C = E - 2p, 

Got = Gos, G02 = Goa. 

We begin our investigation of the impurity level 
with an analysis of oscillations of types a) and b); 
this is simpler than analysis of oscillations of 
types c) and d). On using ( 5) and ( 5') and on carry­
ing out the summation over nearest neighbors, we 
can write D of a) and D of b) in the form 

sin2 k 
a) 1- 2(E + 2p)Ps ~ = 0, 

E 02- E2 + 4p32 sin2 k 
k 

sin2 k 
b) 1- 2(E- 2p)p5 ~ = 0, (13) 

E02- E2 + 4p32 sin2 k 
k 

where Eo = ...J2AJ is the size of the energy gap in 
the spin-wave spectrum; (E5 + 4p2) 112 defines the 
upper limit of the band in the spectrum of the anti­
ferromagnet under consideration. Hereafter we 
shall be interested in those impurity levels whose 
energy falls in the gap (E < E 0, whence it follows 
that E « 2p) in the spin-wave spectrum. 

Because p > 0 and the sum is positive, it follows 
from (13) that when p5 > 0, only a level of type a) 
can be inside the energy gap in the spin-wave spec­
trum. On carrying out the integration in ( 13), we 
get the following equation, which relates the energy 
of the impurity level a) to the ''impurity parame­
ter'' u: 

(14) 

where u = (J'S'- JS)/JS. It can be seen from (14) 
that when 

(1+l'A/2J) >cr> (1-l'A/21) ( 14') 

the level of type a) falls in the gap. 
When p5 < 0, on the other hand, a level corre­

sponding to oscillations of type b) can fall in the 
gap; then there is no type a) level in the gap. The 
energy corresponding to oscillations of type b) is 
determined by the equation 

( 15) 
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The condition for finding a level b) in the gap has 
the form 

-(1+Eo/2p) <a<-(1-E0 /2p). (15') 

In the case of oscillations of types c) and d), the 
situation is much more complicated. The position 
of each of these levels depends on three parame­
ters: p 5, p6, and {3. We have succeeded in analysing 
these levels only for the single value S0 = S0; then 
P5 = Ps = 'l'2f3, and 

) 1 + 2 (E + 2 ~ sin2 k - 0 
c Ps p) ~ E2 E 2 4 2 . z k - ' 

k - 0 - P3 Sill 

d) 1 + 2 (E- 2 ) ~ sin2 k - ( 16) Ps p LJ E2 E 2 4 2 • 2 k - 0. 
k - o - P3 sm 

On comparing ( 16) with (13), we perceive that in 
the case S0 = S0, the levels c) and d) coincide, res­
pectively, with the levels a) and b). 

In (14') and (15'), VA/2J ~ 10-1 to 10-2• It follows 
from ( 14') and ( 15') that the condition for finding an 

impurity level in the energy gap of an antiferro­
magnet is J' ~ J. 
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