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A method is developed for averaging the characteristics of an arbitrary linear system sub­
jected to the action of a random perturbation of the Markov type. A closed set of integra­
differential equations for the averaged density matrix is obtained by means of the method. 
The behavior of a free atom and an atom in a medium interacting with a monochromatic wave 
whose phase changes from time to time is considered as an illustration of the possibilities of 
the method. The method is developed in such a way that the process can be described rigor­
ously even if the phase is not completely changed or even if it remains the same during all 
the intermediate situations. 

RECENTLY one of the authors[ 11 considered the cr.(t) 

relaxation produced in a system whose Hamiltonian 
changes suddenly (accidentally), but remains con­
stant or varies regularly in the intervals between 
the jumps (Fig. 1). It was possible to describe the 
average behavior of a system perturbed by a proc­
ess of this type with perfect rigor by an integral 
equation of the Volterra type, and several particu­
lar problems could be solved on this basis. It was 
assumed that no correlation existed whatever be­
tween the succeeding values of the Hamiltonian, 
before and after the jump. 

In many physical problems this assumption is 
close to the true situation. It is frequently as­
sumed that a Maxwellian distribution is established 
in the gas after each collision of the molecules. 
Then the probability of any particular velocity after 
the collision does not depend on its magnitude be­
fore the collision. This justifies the consideration 
of the Doppler broadening of the line within the 
framework of the previously developed formal­
ism. [ 11 At the same time, a certain correlation 
between the velocities before and after the colli­
sion does exist, [ 21 and no matter how insignificant it 
may be, it raises in principle the question of 
how to further develop the method so as to permit 
allowance for this correlation. Such an improvement 
of the method is all the more necessary if each suc­
ceeding value of the Hamiltonian depends on the pre­
ceding one. 

In particular, it is very important to get rid of 
the assumption that there is no phase correlation 
in succeeding monochromatic trains-Lorentz ra-

FIG. 1. Variation of random variable in one of the realiza­
tions in the abse~elation. 

diation, used as the perturbation for the analysis 
of the interaction between light and an atom in 
[ 1• 31 . This assumption, while approximately valid 
for the radiation in the optical band, turns out to 
be unrealistic in low-frequency magnetic spectro­
scopy. The point is that the electric interactions 
are so strong that, in practice, each collision 
causes a complete collapse of the phase, whereas 
the magnetic interactions, to the contrary, are too 
weak to change the phase in one impact. The phase 
correlation arising in the latter case between the 
neighboring wave trains complicates the radiation 
absorption process, which can consequently be de­
scribed only if the formalism is suitably developed. 

The referred-to generalization of the method 
entails only a certain complication of the statistics. 
Therefore in Sec. 1 of the present article we ob­
tain, by the same method as earlier, [ 1 1 an integra­
differential equation describing the behavior of the 
density-matrix components. This equation takes 
into account the conservation of the phase memory 
in the perturbation acting on the system. If there 
values of the Hamiltonian, this equation to that ob­
tained earlier. [ 11 In the opposite case, when the 
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correlation is completely conserved, i.e., the 
is no correlation whatever between the succeeding 
values of the Hamiltonian, this equation reduces to 
that obtained earlier.[ 11 In the opposite case, when 
the correlation is completely conserved, i.e., the 
change in the Hamiltonian has a strictly determined 
character, this equation turns into the usual Schro­
dinger equation. 

By way of an illustration of the method, we con­
sider in Sec. 2 the already mentioned problem of 
absorption of radiation emitted from a glowing 
gas by an atomic system. In this case it is possi­
ble to obtain the same linear differential equations 
with constant coefficients as in [ 1 1, except that 
they contain now a phase-correlation parameter r. 
By varying this parameter between unity and zero, 
it is possible to modify the composition of the act­
ing light, from monochromatic to very highly 
spread-out with width 1/r0• 

By the same token, the conclusions previously 
d;rawn regarding the kinetics of the process are 
extended in this case also to the case when the 
collisions in the radiating gas are weak (i.e., the 
phase is only slightly changed). 

In Sec. 3 we show that the region of applicability 
of the method can be greatly broadened if we in­
elude into consideration systems not described by 
a Schrodinger equation, but specified by relaxation 
(kinetic) equations. We prove that if these sys­
tems are linear we can apply to them the formalism 
in practically the same form as to the narrower 
class of dynamic systems. Because of this, the 
description of relaxation under the influence of a 
wave with random phase could be extended in the 
last section to a system experiencing spontaneous 
decay and interacting with the medium. 

1. GENERALIZATION OF THE METHOD 

Assume that, as before, the Hamiltonian of the 
system is of the form H = H0 + V(a), where a is 
a jumplike time-varying random param~ter 
(Fig. 1). Accordingly, the perturbation V as a 
function of a remains constant (or varies regu­
larly) over times of the order of T (distributed in 
accordance with the law d.W(r) = r 01 
x exp (-T /ro)dr), experiencing jumplike changes 
at the end of each of them, in accordance with the 
new value of a. As before, the probability of find­
ing a certain value of a at each instant of the 
process is specified by the same distribution, so 
that the perturbing random process a(t) is sta­
tionary: 

dW(a) = <p(a)da. (1.1) 

The new factor here is that if a value a i has 
already been realized in a given interval, then the 
probability of appearance of a i+1 in the next inter­
val is determined not by (1.1), but by the condi­
tional probability 

dWa 1 (ai+l) = j(ai, ai+l)dai+l· 

It is obvious that 

~ <p(a;)da; = ~ /(at-l,a;)da; = 1. 

At the same time we must bear in mind that the 
choice of the functions cp(ai) and f(ai_1, ai) is not 
arbitrary. The condition for the stationarity of the 
process presupposes the existence between them 
of the integral relation 

<p(a;) = ~ /(at-1, at)<p(at-t)da;-t; 

only in this case does the probability (1.1) remain 
unchanged when a changes. 

The function f( ai_1, ai) is the only new element 
which appears in the present variant of the theory, 
compared with the preceding one. The method de­
veloped earlier should now be obtained in the lim­
iting case when 

i.e., there is no correlation at all with the occur­
rences in the preceding intervals. To the con­
trary, if no change in a takes place between inter­
vals, i.e., f(ai-1o ai) = c5(a - ai-1), then we should 
expect the process to develop in accordance with 
the Schrodinger equation (strictly dynamically), 
and the matter reduces to averaging its solution 
over a. 

The probability that k changes of a actually 
took place in the interval (0, t) at succeeding in­
stants t1o t2, ... , tk, and that a certain sequence 
a 0, a1o ... , ak was realized between them, is equal 
to 

I< dt; 
= e-t/To IT -,.-<p(ao)/(ao,a!) ... 

i=1 'to 

I& 

.. . f(ah-l,ah) IT da;. 
i=O 

Using the unitary transformation 

p (t) = S (a, t, t') p (t') §-1 (a, t, t'), 

which satisfies the Schrodinger equation 

dS i ~ ~ 
-=--HS 

dt li ' 

(1.2) 

(1.3) 
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we can readily find the density matrix, which rep­
resents the system at the end of the interval (0, t) 
if k changes of Ql took place in it: 

where 

S; = S (a;, ti+h t;), th+l = t, to = 0. 

Multiplying this expression by its probability (1. 2), 
integrating over all possible positions Pi and val­
ues of the parameter O'i, and then summing over 
the number of jumps, we obtain the sought quan­
tity-the density matrix averaged over all the ran­
dom variables: 

The correlation existing between the 0' i does 
not make it possible to apply to this series the 
transformations that previously[ 1 l led directly to 
an integral equation for 0'. If we introduce the 
partial matrix p (t, {3), defined by 

(1.5) 

i.e., averaged only over those realizations which 
have identical values of O'k = {3 at the instant t, 
then we obtain from (1.4) a series for 

00 1 
p(t, ~)cp(~)exp(t/to) = ~·-, ons 

k=O To 

t t, 

X~···~~ ... ~ s, ... S!p(O)Sci ... S,-1 (1.6) 
"" "'k-1 0 

k k~ 

X IT dti cp ( ao) !( ao, at) ... I ( ak-2, a~t-t) f ( a~t-t; ~) IT dai, 
i=1 i=O 

satisfying the equation 

p(T, a)cp(a)exp(T/To) = S(a,T, 0) p(O)S-i(a,T, 0) 

+ -1- ~ dt exp (-t-) 
1"o 0 To 

X~ d~S(a,T,t)p(t, MS-i(a,T,t)/(~,a)cp(~). (1.7) 

Indeed, after multiplying (1.6) from the left 
and from the right by S(O', T, t) and s-1(0', T, t) 
respectively, and averaging with weight T 01 dt 
f({3, O')d{3 in the interval (0, T) on the right, we ob­
tain the same series as before (with the exception 
of the first term), but with new arguments (i.e., 
p(T, O')l'fJ(O')), whereas on the left we obtain the in-

tegral part of Eq. (1. 7). Formally, (1. 7) is an in­
tegral equation of the mixed type, of the Volterra 
type in T and of the Fredholm type in 0', and in the 
latter case the limit can be infinite. Another fact 
which is new in comparison with the earlier 
paper[ 1l is also that this equation defines a func­
tion of two variables T and 0', and that its solution 
is not the final result of the calculation but must 
be substituted in (1.5) to calculate the complete 
average p(T). 

For a better understanding of the gist of the 
matter, it is useful to represent (1. 7) in the form 
of a system of integral equations for two equiva­
lent functions p(T, 0') and p(T, 0'): 

p ( T, a) e'l'o = S (a, T, 0) p (0) S- 1 (a, T, 0) 

1 \ -+-- J eti'•S(a,T,t)p(t,a)S-1(a,T,t)dt, 
To 0 

(1. 8a) 

p(T, a)=~ !(~(,a)) p(t, ~)cp(~)dp. 
~ cp a 

(1.8b) 

From the meaning of these expressions it is seen 
that p(T, 0') is a subensemble with given Ql directly 
after the jump of the perturbation at the instant t. 
Thus, p(t, 0') is the initial condition in the sub­
ensemble, which then develops regularly from t to 
T, so that at the instant T we get S(O', T, t) 
x p-(t, O')S-1(0', T, t) from p(t, 0'). A contribution 
to p(T, 0') is made by all the sub-ensembles with 
identical 0', which differ only in the time t-the in­
stant of the last jump of 0' prior to T. Therefore 
p(T, 0') is the time average (1.8a) of p(t, 0'). To 
the contrary, p (t, 0') is obtained by averaging 
p (t, {3) over the variable {3, which directly pre­
ceded the given value of 0'. Inasmuch as nothing 
happens to the system (to the density matrix) at 
the instant of a jump of the perturbation, the av.er­
age (1.8b) reflects simply the reshuffling of the 
systems among the sub-ensembles: it takes into 
account the contribution made to p(t, 0') of each 
p(t, {3) in proportion to the probability of the re­
placement of {3 by 0' (Fig. 2). 

The sought mean value p (t) can be determined 
with equal success both in terms of p(t, {3) and in 
terms of p(t, 0'), for by virtue of relations (1.8b) 
and (1. 2) we have 

; = ~ p (t, a)cp (a)da 

= ~ d~ cp(p) ~ f(~, a) p(t, ~)da 
II 

r 
= J p(t, P)'P(~)d~. 
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FIG. 2 

However, the main difficulty consists not in this 
concluding averaging procedure, but in the need for 
solving the integral equations with respect to p 
and p. 

We can see, however, that the integral charac­
ter of Eq. (l.Sa) is immaterial. By directly dif­
ferentiating it with respect to T, taking (1. 3) into 
account, we find the differential equation equiva­
lent to it: 

dp(-r,a) = -~{H(a)p(-r,a)]- p(-c,a)- p(-c,a) 
~ h ~ 

(1. 9) 

If we represent (1. Sb) in operator form as 
p = Tp, then the formal similarity of (1. 9) to the 
equation describing the relaxation of the system 
under the influence of the instantaneous perturba­
tion bursts (collisions) becomes obvious. [ 41 The 
specific feature and the complexity of the present 
problem is manifest only in the fact that in this 
case 1' is much more complicated than the colli­
sion operator, and its integral character cannot be 
eliminated. Nonetheless, in both cases the relaxa­
tion process develops in such a way, as if it were 
attempting to eliminate the difference between 
p (T, a) and p(T, a) = Tp (T, a). 

In the absence of correlation between succes­
sive values of O!i• i.e., when 

f(p, a)= qJ(a), 

we obtain from (1. Sb) 

p(t,a)= ~ p(t, ~)cp(~)d~ = p{t), 

(1.10) 

and taking this circumstance into account, direct 
integration of (l.Sa) with respect to a yields 

p(-c)e*• = ~ S(a,-c, 0) p(O)S-i(a,-c, O)cp(a)da 
G 

1 " +- ~ e''"•dt ~ S(a,-r,tfp(t)S-i(a,-c,t)qJ(a)da ... 
'to o tt 

(1.11) 

which is the result obtained in [ 11 . 

On the other hand, if 

f(~, a) = ll(a- ~), (1.12) 

i.e., no random change in the perturbation takes 
place, then p(T, a) = p(T, a) the relaxation term 
in (1. 9) vanishes, and the equation turns into the 
usual Schrodinger equation. 

In addition to these extreme cases, there are a 
number of cases in which the correlation at the 
instant of the jump is violated only partially, and 
we obtain something intermediate between the 
purely dynamic and the extremely uncorrelated 
process. The generality of the method developed 
here will be brought out most completely in the 
example considered below. 

2. ACTION OF AN IMPACT-BROADENED LINE 
ON AN ATOM 

Let us consider the emission from a radiating 
gas under conditions when thermal broadening of 
the line (due to collisions) prevails over the natural 
and Doppler broadening. Assuming the collisions 
to be adiabatic, we can visualize this radiation as 
consisting of a sequence of monochromatic trains 
of equal amplitude, interrupted in phase at the in­
stants of collision (Fig. 3). 

When such radiation acts on an atomic (two­
level) system, its Hamiltonian can be represented 
in the form 

fi = fio + P exp [i@t + ia(t)], 
Fii = 0, (Ho)i~t = Eilli~t, (2.1) 

where a is the random phase of the acting wave. 
If this phase collapses completely during the col­
lision, then the radiation is the Lorentz wave con­
sidered earlier. [3] With the aid of the formalism 
developed here we can now extend the analysis to 
include also the case when the phase is knocked 
down only partially. 

Let us write Eq. (1.9) for the components of 
the density matrix P12 and pu - P22 = n: 

· . + .ro1 . 1.. Pl2-Pl2 P12 = - ~rooP12 ~ - e'"' ··'"' n - ;:__---'~ 2 'to r 

. . t. *. t!] n-n n = itil1 [p12e-'"' _,"'- P12 e'"' + "' - -- , 
"ro 

where 
ro1 = 2Ftz / h, roo = (E2- Et) / li. 

(2.2a) 

(2.2b) 

The main difficulty in the solution of equations 
of this type is that p(T, a) and p (T, a) are con­
nected by the integral relation (l.Sb). However, 
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mil~ ~f\·f=~t 
t, tz 

FIG. 3. Lorentz wave. 

owing to the special type of the Hamiltonian (2.1) 
and to the obvious fact that f({3, 01) = f({3- 01), this 
difficulty can be circumvented by establishing with 
the aid of (1. 8b) the following identical relations 
between the Fourier transforms of the correspond­
ing density matrices: 

+co 

p(T,k)= ~ e-ikap(T,a)<p(a)da 

+oo 

=fk~ e-ik~p(T,~)<p(~)d~=fkp(T,k), (2.3) 

where, obviously 
+co 

rk = ~ e-iktl.a f(!J.a)d(!J.a), (2.4) 

and D. 01 = {3 - 01 . 
If we now average (2.2) with a weight density 

cp(01), after first multiplying the first equation by 
exp (- i01), then we can express with the aid of (2. 3) 
all the p(T, 1) in terms of p(T, 1) and thus obtain 
the following system of equations for ii(T) and 
cr12(T, 1) =pdT, 1) exp(-iwT): 

iz = iwt[O'tz(T, 1) -- <1t2"(T,1)], 

· . iwt <112(T, 1)[1- fi] 0'!2(T,1)=-z!J.wat2 (T,1)+-n(T)- . 
2 To 

Eliminating from it u12 (T, 1), we obtain the final 
equation for the relaxation of the populations: 

(2.5) 

We can similarly obtain an equation for pdT). 
To this end it is necessary to average the equa­
tions of (2.2) after first multiplying the second of 
them by ei01 . But since the system obtained in 
this case is not closed, it is necessary to obtain 
one more expression from (2.2a), by multiplying 
it by e2i01 prior to the averaging and taking its 
complex conjugate. We thus obtain a system of 
three equations: 

. . - n(T,1)[1-fd 
n (T, 1) = zw1 [a12- a21 (T, 2)]- , 

To 

where 
+oo 

;;12 = P12(t)e-i"'t, n(T, 1) = ~ eian(T, a)<p(a)da, 

+oo 

<12t(T, 2) = ~ e2ia <121 (T, a)<p(a)da. 

Eliminating n( T , 1) and u21 ( T, 2), we obtain 

(2.6) 

Introducing the notation 

1 1-ft 
--=--- (2.7) 

we can reduce (2. 5) and (2.6) to a more compact 
form 

(2.9) 

These equations are the end result of all the 
a veragings and contain all the information con­
cerning the behavior of the system under the in­
fluence of a random process (radiation) of the type 
under consideration. Inasmuch as they do not dif­
fer from the equations obtained earlier, [ 1J all the 
information on the relaxation kinetics can be 
drawn from that paper. 

It is now appropriate to turn to the analysis of 
the limiting situation represented by the distribu-
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tions (1.10) and (1.12). After substituting them in 
(2.4) we obtain respectively 

r1 = r2 = o, 

for it has been assumed, as before, that cp (0!) 
= const, i.e., all the phases at any instant of the 
process are equally probable. We recall that in 
the first case (r1 = r 2 = 0) there is no correlation 
between the neighboring values of the phase, i.e., 
the phase jump can have any value with equal 
probability. To the contrary, when r 1 = r 2 = 1, no 
jumps occur, the phase is conserved throughout, 
and the averaging is meaningful only because each 
term of the ensemble is subject to the action of its 
unique monochromatic wave, which differs from 
the others by just this phase. 

Thus, the quantities r 1 and r 2 are measures 
of the intertrain phase memory in the acting radi­
ation. When there is no memory at all, the coef­
ficients (2.7) are equal to 1/T 1 = 1/T 2 = 1/70, and 
Eqs. (2.8) and (2. 9) themselves reduce as a result 
to the corresponding equations obtained earlier ,c 1l 

as should indeed be the case. To the contrary, for 
a determined process 1/T 1 = 1/7 2 = 0, all there­
laxation terms in these equations vanish, leaving 
the purely dynamic part: 

(2.10) 

where n2 = w ~ + ~ w ~ + ~w 2• The solution of Eqs. 
(2.10) under ordinary conditions[ 1 J yields 

_ OH2 Q,; 
n(,;) = 1- 2--sin2 __ 

Q2 2 ' 

_ w12 • Q,; ii\w 
012 ( 't) = --sm- + co.s Q,; + --sin n~ Q2 2 Q •••. 

We can easily discern in the behavior of these 
averages the usual dynamic process·-nutation­
which is not distorted by averaging over the phase. 

For an analysis of the intermediate situations, 
lying between the considered extreme cases, we 
can use certain model representations of the func­
tion of the phase jumps f(~O!). If, in particular, the 
distribution is of the Lorentz type, 1r-1aj[a2 + (~01) 2 ], 
then we obtain from (2.4) 

If the distribution is Gaussian 

/(Aa)= .1 exp[- (Aa)2lJ, 
ay2n 2a2 

then 

From this we see that a unique correspondence 
exists between r1 and r2, and both these quanti­
ties are exponentially small in a-the value of the 
phase scatter during the jump, if a » 1. 

For real radiation from a gas, the form of 
f(~O!) is unknown, but even without going into the 
form of this function we can present a perfectly 
correct definition for the quantity rk. From the 
meaning of the averaging (2.4) itself, we see that 

f~t = ~ eiht:J.rx /(Aa)d(Aa) = eiki:J.rx 

(X) \'8/Jt 

1 1 rdr 
= 2n j dW(v) j - 8-exp[ikAa(r, v)}, 

0 To 

(2.11) 

where r is the impact distance and v is the rela­
tive velocity of the molecules during the collision. 
The normalization constant s, which enters also 
in the definition of the collision frequency (1/To 
= nsv, where n is the gas density), is eliminated 
when the quantity 

1 1-f,, 00 00 

-- = --- = 2nnv ~ dW(v) ~ rdr 
'th 'to 

To 

X [1- exp ikAa(r, v)] 

is calculated, and therefore it becomes possible to 
take the limit as s - oo in this formula. 

The quantity 1/T 1 has the obvious physical 
meaning of the width of the line of the effective 
radiation. This can be seen from the fact that it 
coincides with its usual definition and, in addition, 
simple calculation of the quantities 

K(,;) = V(,;)V(O) =E02eiro-rexp[ia(,;) -ia(O)] 

= E02 exp (iw't- 't I 'tt), 

1 00 

p(w')=Re- ~ K('t)e-iro'-rd,; 
n 

0 

confirms that 1/ T 1 is identical with the width of 
the effective spectrum. The quantity 1/Tz does 
not have such an analog. It is therefore remark­
able that the relaxation of the populations depends 
only on the composition of the acting light and on 
nothing else, whereas the relaxation of the phases 
is determined in the general case not only by the 
correlation function ( T 1), but also by the more 
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subtle characteristics of the perturbing process 
(72). 

3. DEVELOPMENT OF A METHOD FOR AN 
ARBITRARY LINEAR SYSTEM 

In the preceding sections and earlier[ 1• 3] we 
confined ourselves to dynamic systems that obey 
the Schrodinger equation, so that we could de­
scribe their evolution in time by means of a cor­
responding unitary transformation. However, the 
existence of a unitary transformation is only a 
sufficient but not at all necessary condition for the 
application of the described method. On the other 
hand, it is easy to indicate systems that are de­
scribed by kinetic (and not dynamic) equations of 
the type 

and contain as before a Markov variable in the 
Hamiltonian. These are, for example, a spin in­
teracting weakly with a medium, [ SJ or a gas atom 
experiencing a collision with other atoms[ 4] whose 
relaxation properties are represented in ( 3.1) by 

the operator Q ik, and the equilibrium state is 
represented by the matrix p0• In some cases(SJ 
p0(t) varies regularly with time, following the var­
iation of the external field. Thus in expanding the 
limits of applicability of the method we should 
deal with a linear equation of the general type: 

i) 
Pik = Llmi" (a,<) Plm + di" (<), 

iJ't 

whose solution 

(3.1a) 

Pik(<) = Glmi"(a, <, t)Plm(t) +Di"(a, T, t) (3.2) 

is the analog of the unitary transformation in the 
preceding case, if GJ~ satisfies the equation 

i) 
--G1 ik = L ;~< G1 rs i)T m rs m , (3.3) 

and 
1' 

flik (a, 't, t) = ~ dt' drs (t') G, .• ik (a, 't, t'). ( 3.4) 
t 

Using (3.2)-(3.4), we can easily construct the 
solution that is obtained at the instant t after k 
changes of a occurring in the interval (0, t): 

k 

Pi~< ( ao, ... , ak; tt, ... , t"; t) = X"+ Y" +~A,." 
r=t 

(3.5) 

k 

+ ~G1mi"(k)Gnplm(k-1) ... G1qhs(r+ 1)fl1q(r), 
r=t 

where 

(and the same for D(i)). 
Accordingly, in the averaging of (3.5) over (1.2) 

(where we left out dak = df3 ), it turns out that the 
partial matrix p (t, {3) is a sum of three terms 

p(t, /l)q>(/3) = X(t, /3) + Y(t, /3) + Z(t, /3), 

two of which 
eo "" 

are precisely the same multiplications as in (1. 6), 
and are subsequently transformed in perfect 
analogy, and only the last term 

00 k (X) k 

Z(t, /3)= ~ [ ~Ar" ]=D(f3,t,O)fJl(/3)e-t!to+ ~ ~ Ar" 
R=O T=! k=l T=! 

(3.6) 
calls for prior simplification. Carrying out the in-

tegration in A~ over r - 1 time values and r - 1 
first parameters, on which the averaged quantity 
does not depend, we can replace the index r of all 
the internal variables in the integrals by unity, 
after which we obtain 

e-1/To t ta 

A,-"=,k-r+t~ ···~ ~ ... ~Glmik(k-r) ... 
0 ak-r a1 0 0 

r-1 

... G1qh•(2)D1q(1) --,-t1-­
,~-1(r-1)! 

k-l 

X fJl(at)f(a~, a2) ... . f(ak-r, /3) ITdt;da;. 

i=1 
(3.7) 

Substituting this result in (3.6) and changing the 
order of summation, we can readily note that the 
power-law series contract into exponentials, so 
that we ultimately obtain 

t 00 00 

Z(t, /3) = D(f3, t, O)<p(f3)exp (--) + ~ ~ Ar+i-1 
'to .· r 

i=i T=1 

=flii<(O)cpexp (-~ )+ ic1mi"(k) ... 
0 k=t 

(3.8) 
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and the latter expression includes the free term in 
the common series under the index zero, as was 
done by us earlier. 

It is now easy to see that Z (t, {3) is perfectly 
identical in structure with X(t, {3) and Y (t, {3), and 
the series (3.6) therefore satisfies the following 
integral equation: 

Pik('t, a) e*• = Gzmik (a, 't, 0) Pzm(O) 

1 ~ 
+- ~ et/-roGlmik(a, 't, t) Pzm('t, a)dt 

'to o 

1 if 
+Dik(a, 't, 0) +- ~ e*•Di~ (a, 't, t) dt, 

'to o 
(3.9) 

which is a direct generalization of (1. 7) for an ar­
bitrary linear system. Moreover, ~ince it is known 
that G~~ satisfies Eq. (3. 3) and D1k satisfies 
(3.4), we can verify by simple differentiation, just 
as before, that (3. 9) reduces to the differential 
equation 

ap,·k ('t a) 
__:...c._:_:_' --'--- = Lzmik ('t, a) Pzm('t, a) 

8't 

1 -+ dik ('t)-- [Pik ('t, a)- Pik ('t, a)] 
'to 

with the same definition of p(T, a) as before. 

4. ACTION OF IMPACT-BROADENED 
RADIATION ON A SUBSTANCE 

(3.10) 

The broadening attained in this manner by a 
class of systems in which the method is applicable 
allows us to describe the action of a wave with 
variable phase on an atom interacting with a me­
dium, i.e., the absorption of radiation in a sub­
stance. The kinetic equations describing such a 
system differ from the dynamic equations by 
terms that describe the relaxation of the compo­
nents of the density matrix under the influence of 
the medium. By introducing similar terms we can 
take into account the spontaneous deactivation of 
the excited states. For a two-level system this 
means the following modernization of the dynamic 
equations 

8p11- _..!._[H] + P22 -~ 
8't - 1i P 11 T t'' T t' ' 

(4.1) 

Here T0 is the spontaneous-emission time, Ti' 
and T1 are the times of adiabatic transitions un­
der the influence of the substance from the upper 
level to the lower one and in the opposite direction, 
and T2 is the phase relaxation time due to all 
these mechanisms (including adiabatic broadening). 

Using (4.1) we get from (3.10) 

( 1 1 1 ) n-n 
- Tt'' -w+ 2To __ 't_o_' (4.2a) 

8cru = _ iAoocr12 + ioo1n exp (ia) _ 0'1 2 _ cr12 - ~12 . 

8't 2 T2 'to 

(4.2b) 
These equations, which differ from (2.2) in allow­
ance for the spontaneous degradation and the in­
teraction of the atom with the medium, do not com­
plicate the calculation in any manner, and the cal­
culation is carried in exact correspondence with 
the procedure described above. As a result, for 
example, for the relaxation of the populations we 
obtain an equation identical to that obtained in ° 1: 

in which, however, the phase relaxation times T2 

1 1 1 
'1'2 = T2 + -:ro- (4.4) 

and the population relaxation time T 1 

(4.5) 

are determined with allowance for the simultane­
ous action of the medium, the vacuum, and the 
broad spectral line, while n0, defined by the rela­
tion 

( 1 1 1) 1 1 1 
no T"+ T/+ 2T0 = T1"-T1:+- 2To' (4.6) 

represents the stationary population of the levels 
in the .absence of action by the light. When T1 
= Ti' = T2 = T0 =oo, Eq. (4.3) reduces to (2.8), and 
when T 1 = T 2 = T 0 = oo it reduces to that obtained 
in [ 11 • This equation has thus a general character 
and only under the conditions spelled out in [ T 1 
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does it reduce to the fundamental equation for the 
transition model describing the kinetics of absorp­
tion of only sufficiently weak radiation. 

1 A. I. Burshte!n, JETP 49, 1362 (1965), Soviet 
Phys. JETP 22, 939 (1966). 

2 S. Chapman and T. G. Cowling, The Mathe­
matical Theory of Non-uniform Gases. 'Cambridge, 
1939. 

3 A. I. Burshte!n, JETP 48, 850 (1965), Soviet 
Phys. JETP 21, 567 (1965). 

4 A. I. Burshte!n, DAN SSSR 166, 577 (1966), 
Soviet Phys. Doklady 11, 65 (1966). 

5 A. Abragam, The Principles of Nuclear Mag­
netism, Oxford, 1961, Ch. 12. 

6 R. Karplus and J. Schwinger, Phys. Rev. 73, 
1020 (1948). 

7 A. I. Burshte!n, ZhPS (J. of Appl. Spectro­
scopy) 2, 424 (1965). 

Translated by J. G. Adashko 
129 


