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A diagram technique is employed for deducing the equations for the transverse components of 
the magnetization of a ferrodielectric in an alternating homogeneous magnetic field which is 
perpendicular to the direction of easy magnetization. The equations derived differ structurally 
from the equations with a Landau- Lifshitz relaxation term. 

IN investigating the behavior of ferrodieleetrics 
in a transverse alternating magnetic field, an 
equation proposed by Landau and Lifshitz l 1.l is 
frequently used for the magnetization: 

:t\1 = -g[l\Uieff] --f.Mo-2 [M[MHen ]], (1)* 

where M is the magnetization vector, g is the 
gyromagnetic ratio, A is the relaxation constant, 
M0 = I M I , and Heff is the effective magnetic field. 

In the spatially homogeneous case, Heff = Ho 
+ f3 n(n. M) + h, where H0 = nHo is the de field ap­
plied along the easy axis, f3 is the anisotropy con­
stant, and h is the transverse ac field. The re­
laxation term in Eq. (1) is chosen such that in the 
absence of the ac field the magnetization vector 
approaches the direction of Heff without changing 
in magnitude. Sometimes other equations are used 
(see, for example, lZJ), which in the linear approx­
imation to the nonequilibrium addition to the mag­
netization and ac field are equivalent to Eq. (1) if 
the corresponding relaxation constants are suffi­
ciently small. All of these equations, as well as 
(1), are obtained from graphical considerations 
and hence can pretend to only a qualitative de­
scription of the properties of a ferromagnet. 

The goal of this paper is the systematic deriva­
tion of the linearized equations for the transverse 
components of the magnetization with account 
taken of interactions in the spin system. (We note 
that the case of ferromagnetic resonance was con­
sidered earlier in l 3J and l 4J .) In doing this we 
restrict ourselves to the low-temperature region, 
where the spin-wave approximation is valid. Since 
at low temperatures the relaxation processes are 
determined mainly by interactions between spin 
waves, we shall not take into account the interac­
tion of spin waves with phonons. l 5J In addition, we 

shall consider the ferromagnet to be ideal, i.e., 
free of defects. 

1. We shall write the Hamiltonian of the sys­
tem in the form :/C = :'JC 0, where ;'i( 0 is the sum of 
the energy of the exchange interaction and the 
Zeeman energy of the spin system in a steady and 
homogeneous magnetic field applied along the easy 
axis; V is the energy associated with the relativ­
istic interactions. The interaction with the high­
frequency transverse field h (h1 cos wt, h2 sin wt, 
0) is described by the Hamiltonian ;/C t = - M · h, 
where M is the total magnetic moment operator. 
Using Kubo's formula,lSJ we may write, following 
Konstantinov and Perel', [ 7 J expressions for the 
average values of the transverse components of 
the magnetic moment: 

(JJ-) = (J/-;_ + <M-)+, M- = Mx- iMy, 

(Jfo)_ = hl ~ h2 e-iwt z-1 {~ dA. Sp [ e-~x, T 
0 

XSp [e-~x,rexph~ ~vzaz)M-in).M~l}. (2) 
c 

Here (M-)+ and (M-) _ are the positive- and 
negative-frequency parts of (M-), which are ob­
tained from each other by the replacement 
w .---..-wand h2 ----.. -h2, Z = Sp exp ( -{3:JC0), 

f3 = 1/T. The dummy subscripts on the operators 
indicate the Heisenberg representation with the 
Hamiltonian .tr0; for example, 

l"z = exp (- i~ :Jfoz) Vexp( i! :Jtoz ). 

The integration over z in the first term is carried 
out along the imaginary axis, and in the second 
along a contour joining the points T and T - ifi{3 
and passing through the point -inA (see l 7l); 
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T-ordering is carried out along these contours. 
We note that since t.h,e total moment commutes 

with the Hamiltonian of the exchange interaction, 
it falls out from the time dependence of the opera­
tors M- and M+. From this, in particular, it fol­
lows that the exchange interaction by itself does 
not lead to a broadening or a shift of the ferromag­
netic resonance line. 

2. In the spin-wave approximation the trans­
verse components of the moment may be repre­
sented in the form of an expansion in powers of 
the Bose operators b + and b by means of the 
Holstein-Primakoff formulas. [ 81 

Limiting ourselves to terms of the fourth order, 
we have 

:!ffo =Eo+~ (8ca2k2 +~tHo) bk+bk 
k 

+ ~ <111, 2; 3, 4 bt bt, bk,bk., 
k,+k,=k,+k• 

(3) 

where ®c is the Curie temperature, a is the lat­
tice constant, and k is the wave vector of the 
spin wave; J.1- = gil; the explicit form of the ampli­
tudes <I>1, 2; 3, 4 associated with the exchange inter­
action are given, for example, in the review. [ 51 

We shall for simplicity take into account only 
anisotropy energy, considering that we have a uni­
axial crystal with a positive anisotropy constant. 
Then the anisotropy energy is equal to 
1h,{3 J (M~ + M})dv, and, as is easy to show, 

(4) 

where v is the volume of the body. The part of 
the considered interaction that is quadratic in the 
operators can be included in the Hamiltonian :Je0 if 
to the applied field one adds an anisotropy field 

f3Mo. 
In deriving the equations for the magnetization 

we shall make use of the graphical technique pro­
posed by Konstantinov and Perel'. [TJ If we write 
down the expansions for M+ and M- in Bose oper­
ators, then, as can be seen from (2), the quantity 
(M-)_ is represented in the form of a sum of 
terms of different structure. We consider only the 
first term of this sum, corresponding to the ap­
proximation M+ = (2J.1,M0v) 112 b;, M- = (2J.1-Mov) 1/ 2b0• 

It can be shown that the remaining terms, which 
contain a greater number of the operators b + 
and b, lead to a small contribution with respect to 
temperature. 

We introduce the symbols K _ and L_ for the 
first and second terms in Eq. (2): (M-)_= K_ + L_. 
The first term corresponds to the static magneti-

zation. It can be calculated by means of the ther­
modynamic theory of perturbations with respect 
to the interaction V. The second term L_ is as­
sociated with time dispersion. The perturbation 
series for this term contains the dangerous de­
nominators w0 - w (w0 = gH0), which correspond 
to ferromagnetic resonance. The summation of 
the series reduces to a solution of an equation 
which in this case is algebraic and has the form 

i(wo- w)L_ = R_ + W_L_, (5) 

In this equation R_ means the sum of diagrams 
that do not contain horizontal irreducible parts, 1 > 

without the right edge vertical section; W _ is the 
sum of horizontal irreducible parts without the 
free sections and the extreme left line. 

Replacing L_ by (M-)_ - K _ in Eq. (5), we find 

i(cu0 - w)<M-)_- W_<.ilf-)_ 

= R_ + i(wo- w)K-- WJL. 

The coefficients of the obtained equation do not 
contain dangerous denominators, and in calculating 
them one may consider only terms quadratic in the 
interactions. Then it turns out that in the right 
part of the equality the second order terms cancel 
out, and as a result only terms of zero order in 
the interaction remain. After the calculations we 
finally obtain a system of equations for the mag­
netization: 

. . - . hi -l-h2 . -- ~wM_- =- ~woM- + ~gMo---e-trot + W__M_' 
2 

. . . hl-h2. 
!WM+- = - !WoM+- -J- tgMo-2-- e'"'1 -J- W ~+ -, (6) 

where 

i 1 
c'I+(X)= cS(x)-J--P-, 

l1 X 

(the brackets ( ... ) are left out). 
It is to be noted that in deriving Eqs. (6) we 

neglected the contribution from terms of the fourth 
order in the Hamiltonian .'!/Co (see Eq. (3)). As 
follows from the calculations, taking these terms 
into account leads to imaginary and frequency­
independent additions to the quantities w+ and w -· 
This gives an insignificant shift of the frequency 

l)We follow the tenninology proposed in[ 7]. 
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of ferromagnetic resonance w0 which, of course, 
is proportional to the relativistic interaction con­
stant {3. We note also that, although in the deriva­
tion of Eqs. (6) we used the Hamiltonian for the 
relativistic interaction in its simplest form (4), 
the structure of the equations is in fact preserved 
even in the general case. (The expressions for 
W+ and W_ will of course be different in this 
case.) 

3. The equations (6) we have obtained differ 
from the linearized Landau-Lifshitz equations, 
which can be written in the form (v = Aw0 /gM0): 

- iwM _- = - [woM--

A comparison of Eqs. (6) and (7) shows that the 
Landau-Lifshitz equation (1) should be altered in 
the following way: 1) in the term M x (M x Heff), 
the field Heff = Ho + n(M • n) does not contain the 
alternating field h; 2) the coefficient A needs to 
be considered as independent of the frequency w 
and different for left and right field polarizations, 
whereby Aright(w) = A left(- w). 

These differences can significantly affect physi­
cal results. As an example we give the expression 
for the coefficient of absorption r of the alter­
nating magnetic field. According to the Landau­
Lifshitz equation, 

f= 4JtgMow2v ·[ (h1 +hz) 2 + (h1 -h2)2 J 
(h,2 +hz2)wo (wo-w)2+v2 (wo+wP+'\'2 ' 

whereas, if we start from Eq. (6), 

4JtgMow [ (h,+h2) 2v-r- ~ 
- h,2 + h22 (wo-w- 0-)2 + V-2 

(h,-h2)2v+ J 
(wo+w-o+) 2+v+2 ' 

where 

In particular, for the case of circular polariza­
tion (h1 = h2) far from resonance we have, re­
spectively, 

w2v 
r = 8JtgMo ( ) 2 , 

Wo Wo- w 
r = 8JtgMo )2 (wo-w 
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