
SOVIET PHYSICS JETP VOLUME 24, NUMBER 3 MARCH, 1967 

PARTICLE RELAXATION IN A MAXWELL GAS 

V. M. GALITSKrl and V. V. YAKIMETS 

Moscow Engineering-Physics Institute 

Submitted to JETP editor April 29, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 51, 957-964 (September, 1966) 

The effect of particle interaction on their distribution and relaxation is considered. It is 
shown that the quantum energy indeterminancy due to the interaction leads to the appear­
ance of power-law tails in the momentum distribution. A time-dependent distribution func­
tion characterizing the relaxation of a particle in a Maxwell gas has been obtained by taking 
into account quantum corrections. The particle is assumed to possess a definite momentum 
at the initial time. A kinetic equation which takes the quantum energy indeterminacy into 
account is derived. 

THE energy spectrum of a system can, in a large 
number of cases, be described in terms of quasi­
particles. The quasiparticle states are not, strictly 
speaking, stationary states, but decay with time as 
the result of interaction processes. The presence 
of damping means that the energy of the quasipar­
ticles is not real, and contains an imaginary cor­
rection, proportional to the reciprocal of the re­
laxation time. With account of this quantum cor­
rection to the energy, the momentum distribution 
of the quasiparticles, and consequently also of the 
particles, cannot be described by the usual Bose 
or Fermi distributions. It is shown in the present 
research that the particle momentum distribution 
is determined by an integral over the energy of 
the ordinary distribution function, multiplied by 
the dispersion function width, equal to the quantum 
energy indeterminacy. Such a dependence leads to 
the appearance of power-law "tails" in the mo­
mentum distribution of the particles. In consider­
ing specific physical effects, one must keep in mind 
that the particles described by such tails are vir­
tual, so that their energy and momentum are not 
connected by the usual relation. 

The noted quantum -energy indeterminacy of 
quasiparticles also leads to the appearance of spe­
cific quantum corrections to the kinetic equations. 
Actually, in their calculation, the collision terms 
will no longer have their usual form with a delta 
function describing the energy conservation law. 
Using the terminology of the theory of spectral 
line widths, one can say that because of the relax­
ation process, there is a "natural width" of this 
delta function. We obtain here a solution of the 
problem of the relaxation of the particle distribu­
tion in a Boltzmann gas with account of the effects 

mentioned. It is shown that this process does not 
take place monotonically, and the distribution func­
tion contains oscillatory terms. A kinetic equation 
is found for such a function in the simplest case of 
a gas of infinitely heavy particles. 

1. We consider a system of interacting particles 
in thermal equilibrium. We assume that the in­
teraction in the system is weak in the sense that 
there exists the concept of quasiparticles charac­
terized by a momentum p. For simplicity in the 
subsequent calculations, we also assume the con­
ditions of applicability of perturbation theory to be 
satisfied (the generalization to the case of the gas 
approximation does not present any difficulty). The 
energy of the quasiparticles is E(p) and, since 
dispersion will not be important in what follows, 
we set 

(1) 

(the system of units is chosen in which li = m = 1 ). 
For definiteness, let the particles obey Fermi sta­
tistics. In the case of zero temperature, the mean 
number of particles in a state with given momentum 
p, as is well known, has the form[!] 

1 I' 

n(p) =- ~ dcu Im G(p, w), 
:rt 

(2) 

J.l is the chemical potential of the system. Under 
our assumptions, the Green's function G is equal 
to 

G = (w- e(p) - iy)-1, (3) 

where y is the damping decrement of the quasi­
particle states. Consequently, 
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p. 

1 r " n(p)=- .l dw . 
n_·"" [w-e(p)J2+vz 

(4) 

In the absence of interaction ( y- 0), this expres­
sion transforms to the usual Fermi distribution 
function. For y not equal to zero, tails appear in 
the distribution function, which fall off with mo­
mentum according to a power law 

1 J.l 

n(p)= --- ~ dwy(p,w), P';:3>Pt- (5) 
:rte2 (P) -oo 

It is natural to expect a similar situation to 
arise for a temperature different from zero. 
Therefore, we shall not consider Eq. (5) in fur­
ther detail, but shall turn at once to the case of 
an arbitrary temperature. It is evident before­
hand that, for sufficiently large p, a mixture of 
states of each quasiparticle, falling off according 
to a power law, can exceed the exponential contri­
bution of the fundamental part. The mean number 
of particles is described in the following fashion: 

n(p) = ~ ~ e+iO G(p, en) 
~ 'n 

~ dw 1 V(P, w) 
= -oo e~<w-p.) + 1 :rt [w-e(p))2 + vz(p, w) 

(6) 

Here G(p, En) is the single-particle temperature 
Green's function of a system of interacting parti­
cles, [2] f3 = T-1• The function y (for s = Y2 ) has 
the formC 3J 

'Y (p, w) = n ~ dq dp1 V q (2V q - V q-p-v,) 

X b(w- ep-q + ep,- ep,-q), 

V q is the Fourier component of the interaction 
potential, np = { exp [{3( Ep -J.d] + 1} - 1, dq 
= d3q/ ( 27f )3. 

(7) 

We denote by Pf the characteristic momentum 
in the system (for example, this is the Fermi mo­
mentum at low temperatures and the mean thermal 
momentum at high temperatures). For p >> Pf, 
the maxima of the functions entering into the inte­
gral (6) are widely separated and, consequently, 
there are two regions which give the largest con­
tribution. It is not difficult to see that the region 
of the maximum of the dispersion equation gives 
the usual result, and is determined by the inequal­
ity w » Wf, where Wf ~ min [ J.t, f3 - 1 ). On the 
other hand, { exp [ {3 ( w- 11 )] + 1} - 1 is of the order 
of unity in the interval - 00 < w :S Wf and falls off 
exponentially for w > wf. Therefore, for large 

momenta, Eq. (6) can be represented as the sum 
of two components: 

"'t 
1 1 V(P, w) 

n(p)=nv+-.\dw . =nv+vv, 
:rt_·oo ((J)-ep)2 

p';:3>pf. (8) 

Substituting the value y from (7) in vp, and inte­
grating with the delta function, we get 

(9) 

with the condition 

(10) 

It is easy to conclude that the region of nonex­
ponential contribution is limited by the order equal­
ities 

Neglecting unimportant terms in (9), we finally 
obtain 

where n is the particle number density. 

(11) 

In the case of short-range interaction I Vp 12 

~ 1f(J' ( Pf « p « 1/ a, a is the region of action of 
the potential ) 

n n2er 
Vp=---

4 P" ' 

cr is the integral scattering cross section. For 
Coulomb interaction, Vp = 47fe2/p2 and 

(12) 

(13) 

The value of Vp (13) is comparable with the Max­
well term when 

e(p) e(p) m'f,T'i, (14) 
----4ln--=ln--

T T nne" ' 
which, for hydrogen gas under normal conditions, 
gives E(p )/T = 10-20. 

We note that the numerical corrections have a 
truly quantum character and vanish as 11 ap­
proaches zero. 

2. Let us consider further the problem of dif­
fusion in momentum space of a particle with initial 
momentum Po moving in an ideal gas of particles 
of mass M. The total Hamiltonian has the form 

If= Ho +He+ Hint = ~ epap+ap + ~ep'bp+bp 
(15) 
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(we make use of a system of units in which the 
mass of the particle m = ti = 1 ), where ap and ap 
are the creation and annihilation operators of the 
particle; bp and bp are the corresponding oper­
ators referring to the particles of the gas; Ep 
= p2/2, Ep = p2/2M and Vq is the Fourier com­
ponent of the interaction potential. 

We denote the eigenfunctions of H0 and He by 
I p) = apl 0) and I s) (I ps) = I p) I s)). Then the 
formal solution of this equation with the complete 
Hamiltonian (15) is 

(16) 

The particle distribution function at the instant of 
time t > 0 with initial condition p = Po at t = 0 is 
obviously determined by the equality 

np, (p, t) = (I'D (t), ap +ap<D (t)) 8 • (17) 

The index s on the matrix element denotes the av­
erage over all states of the system with matrix 
density 

p = exp {~(Q +~LV -He)}. 

Substituting the value of <I> ( t) (16) in (17) and in­
troducing the Heisenberg operators 

iip (t) = eiHtape-iHt, 

we get by means of simple transformations 

np,(p, t) = (<siG*(ppo, t)G(ppo, t) Is>).. (18) 

It must be kept in mind that the single-particle 
Green's functions 

G(PPo,t-t') = -i<OIT{iip(t)iip,+(t')}IO> (19) 

are operators over a variable system. It is inter­
esting that fort< 0, the mean (T{ap(t)ap0 + (0)}) 
= 0 and, consequently, the distribution function (18) 
has meaning only for positive times, as should be 
the case. 

Furthermore, it is convenient to introduce the 
two-particle Green's function according to the 
formula 

K (ppo, tto; PPo, t' to') 

= (<siG'(ppo, t- to)G(ppo, t'- to') is)).. (20) 

The distribution function (18) is expressed in its 
terms in the following simple fashion 

np, (p, t) = K (PPo, tO; PPo, tO). (21) 

Because of the time homogeneity, K depends only 
on three times, for example, t - t', t 0 - t0 and 
~(t+t')- Y2(t0 +t6). Taking this circumstance 
into account and also (21), we find 

1 dw dwo d/... 
llpu(p,t)=J (2:n:) 3 e-iAIK(PoP,(•Jow;A,). (22) 

The rules of the diagram technique for K are 
obtained by means of the usual procedure-trans­
formation to the interaction representation with 
subsequent expansion of the S matrix in powers 
in Hint (the only singularity is the simultaneous 
use of the temperature and zero-temperature tech­
niques of the Green's function). In view of the 
simplicity of the operation set forth, there is no 
need for going into the procedure in detail. There­
fore, we shall at once write down the final results. 
Here, for the sake of simplicity of exposition, we 
again limit ourselves to consideration of the region 
of applicability of the Born approximation. Further­
more, we shall not be interested in the "shift" of 
the energy of the particle and, consequently, in the 
calculation of the self-energy part I:, we shall 
keep only its imaginary part which corresponds 
to the ''width.'' 

The lines of interaction with momentum q 
= ( q, v) (denoted on the graph by a wavy line), 
corresponds to the function D( q) 

D(q) = 2:n:j V,1 12 ~ dpnp6(v + ep'- e~-q) 

= 2:n:IVql 2n (___!_, )'1,exp [-_l__,(v- eq')2]. (23) 
\ 4:n:eq 4:n:e,1 

The latter enters with negative sign if the line be­
longs to a definite single particle Green's function. 
Straight lines in the graph correspond to the 
Green's function (19) averaged over the states 
of the system; G and G* have opposite directions. 

The zero Green's function is equal to 

G(Dl(p) = (w- Ep + i6)- 1• (24) 

The exact G function is described in the well­
known fashion [2 ~ 

G(p) = (w- ep -l: (p) )-t, (25) 

where I: is in turn determined, generally speak­
ing, by the integral equation 

l:(p)= J dqD(q)G(p- q), dq = dq dv. 
2Jt 

= 

(26) 
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The equation which K satisfies is represented 
graphically in the drawing (all straight lines cor­
respond to exact G). In analytic form, 

K(po, p; A.)= G* (p- 1HA.)G(p + 1/2A.)o(p- Po) 

+ G* (P ___:: 1/2A.) G (P + 1/z'A) ~ dqD ( q) K (Po, p + q; A.), 

o(p-po) = (2n} 40(P-Po}6(w-wo). (27) 

For solution of the given equation, we shall ex­
press it in another equivalent form 

K (Po, p; A.)= G* (Po- 1/2A.) G(po + 1hA.) { 6 (p-po) 

+ ~ dqD(q)K(Po- q, p; A.)}. (27') 

Integrating this equation over p, we see that the 
function 

rp(po, A.)= ~ dp K(po, p, A.) (28) 

obeys the relation 

+ ~ dqD(q)rp(po- q, A.}}. (29) 

Forming the difference G - 1( Po+ %A.)- G*- 1( Po- ?'2A.) 
by using Eqs. (25) and (26) for G and 1:, it is not 
difficult to show that the solution of Eq. (29) is 

where A. - 1 must be taken in the sense (A.+ io) - 1 

[this is evident from the definition of G<o> (24)). 
The satisfaction of the law of conservation of 

number of particles follows immediately from 
these relations. Actually, noting that the poles of 
G and G* in A. lie in different half planes, and 
that G(p0, -0 ), we have 

\ 1 dwodA. 
.l dpnp, (p, t) = .l (2n) 2 e-iMrp (Po, 'A) 

= \ dwo_e-i·OiG(po)= iG(p0 , + 0) = 1. 
.l 2n 

We shall now seek K in the form 

K (Po, p; A.) -G* (p - 1/2A.} G (p + 1/2A.) {~ (p- Po) 

+q>(po, A.)f(pop, "A)}. (31) 

A simple substitution of this quantity in (27) yields 

!(PoP, A.)= D(po- p) + ~ dq[D(p- q)- D(po- p)] 

(32) 

The equation for f can be solved by successive 
approximations. Limiting ourselves to the zero 
approximation, in which f does not depend on A. 
and is equal to D (Po - p), we obtain the following 
function as a solution of the integral equation (27): 

K (Po, p; A.} = G' (p - 1/z"A) G (p + 1/z"A) { o (p - po) 

+ qJ (po, A.) D (po - p) } . (33) 

The desired distribution is found by substituting 
Eq. (33) in Eq. (22), and integration over the vari­
ables indicated. The calculations are not difficult 
if one notes that it suffices to take the values of the 
eigenenergy parts at the poles of the correspond­
ing Green's function. We write down the final re­
sult: 

np, (p, t) = (2n)3 0 (p- p0) e-2:E,t + ~ dp1 np,r Po (p1; p, t), 

(34) 

where 

~ = Im ~ (p} .~± = ~ ± ~o, 

E = Ep - Ep, + e' p,+Po-P - Ep/. 

The imaginary part of 1: appearing here is 
found by perturbation theory, i.e., from Eq. (26), 
in which the exact G is replaced by G<0>. For ex­
ample, in the case of short range effects, 

, ncr ( 1 ) lm~(p)=-2 !12 P2 +-Pi , 
P 2 I 

(35) 

the reduced mass J.1 = M/ ( 1 + M ), the mean thermal 
momentum Pf= (2Mj3-1 ) 1/2 • 

As was also to be expected, for large values of 
the time the distribution function is described by 
an integral of the type (6). The classical limit as 
ti- 0 is obvious. The most evident specific fea­
tures of the distribution (34) are seen in the sim­
ple example of an infinitely heavy mass for the 
particles of the medium. It is interesting that in 
this case the solution (33) is an exact solution of 
Eq. (27) with D(q) = 27r!Vql 2no(v). 

In (34) the limit is taken directly by letting M 
go to infinity, we obtain (short range ) 
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2n: "f 
np,(p, t) = (2n:) 3 6(p- p0)e-vt +-- --'---

Po (ep-ep,} 2 +v2 

x{1-e-Y1[cos(ep-ep,}t+ "f .sin(ep-ep,}t]}. 
ep- ep, ' 

(36) 

where y = nap0• Thus the establishment of equi­
librium of the distribution function is accompanied 
by unique quantum oscillations. 

We now find the kinetic equation that describes 
the relaxation of the given particle in a gas of in­
finitely heavy particles. The Fourier component 
np0(p,t) (36) is equal to 

(37) 

It is convenient to introduce a function integrated 
over the angles of the vector p, 

1 do 
QJ~(e-eo)= J (Zn:)3np,(p,A.). (38) 

The kinetic equation for such a function should have 
the form 

- iA.Ql~(e- eo)= __!_l'l(e- eo)- "fQl~(e- eo) 
Po 

+ ::2 ~de'S~(e-e')QJ~(e'-e0). (39) 

It is then not difficult to find a Fourier-type kernel 
of the equation SA. ( T) expressed in terms of the 
Fourier component 'PA. ( T ). By determining the 
latter by means of (37) and (38) and by inverting 
SA. ( T) we get 

"f - if. r e-ie~ 
s~(e) = n:v --· J d,; --::---------::--;---;---:-'---~ 

Po -oo "f - if.. exp ( 11: I ( "f - if.) ] 

Po n: 

+ (1 + s) F(1, 1, 2- 6; ~'~>1. (40) 

where ~ = iE:/ ( y- iA.) and o = y/ ( y- iA.). The ex­
pression in square brackets is a smooth function 
of the energy; therefore, with sufficient accuracy, 

s~(e)~2:rt2-y ~ -y-il. 
Po n: e2 + ( v - if.) 2 ' 

(40') 

The characteristic dispersion shape of this func­
tion, with y- iA. as the "damping decrement," is 
a reflection of the fact, pointed out at the begin­
ning, of the smearing out of the delta function of 
the law of energy conservation. 

In conclusion, we shall show how the transition 
to the classical kinetic equation takes place in the 
quantum-mechanical equations. For this purpose, 
we introduce the Planck constant in explicit fash­
ion and formally allow it to approach zero. We 
shall mark the delta function arising here by the 
index ti. First of all, we have 

c•( _ _it.)c( +-~A)--+n:6n(w-ep) 
\p 2 p 2 1 I i \ • 

li ~--A I 
2 / 

~ (p)--+ ~ ~ dq D(q) 6 n (v- ep + Ep-ri}. (41) 

We substitute these relations in the equation for 
K (27), multiply it by ti(~- %iA.) exp(-iA.t) and, 
deriving the initial condition from it, we integrate 
over w, w0 and A.. As a result, we find 

on(p, t) 2n: 1 -a-t--·=- hn(p, t) .l dqD(q)6 n (v- ep + cp-q) 

2:rt r +---,; JdqD(q)6n (v+ep-Ep+q)n(p+q,t). (42) 

Recalling the definition (23) of D(q ), we can write 
down the resultant equation in the form 

on(p, t) 1 
-~ = J dqdp1 [n(p- <J, t)nr,- np,-<1 n(p, t)] 

2n; 12 I I X Tl Vq 1'1 11 (ep- ep-q + ep,-q- ep,). 

which corresponds accurately to the ordinary clas­
sical kinetic equation. 
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