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Scattering of spin waves and phonons on dislocations, in ferro- and antiferromagnets, is con
sidered. It is shown that the mean lifetime of a spin wave is proportional, in a ferromagnet, 
to ~ -l 12 T-3 / 2 ; and in an antiferromagnet, to ~ -l / 2 T-2 (when T » E0): here T is the temper
ature, ~ is the dislocation concentration, and Eo is the activation energy of spin waves. The 
contribution to the heat conductivity by scattering of spin waves and phonons on dislocations 
is estimated. The spin coefficient of heat conductivity Ks is given by formula (3.4) in the 
case of ferromagnets, and by formula (5.10) in the case of antiferromagnets. The phonon co
efficient of heat conductivity is given by formula (3.5). 

INTRODUCTION 

IN the study of relaxational and kinetic phenom
ena in ferro- and antiferromagnets in the low
temperature region, the processes usually taken 
into account are those connected with the interac
tion of spin waves with one another, of spin waves 
with phonons, [ 1J of spin waves with conduction 
electrons, [2 J and also of spin waves with isolated 
point defects[ 3J (chemical impurities and iso
topes). 

The present paper considers the scattering of 
spin waves and phonons on dislocations in ferro
and antiferromagnets. It is shown that the domi
nant role, in the low-temperature region, is played 
by the scattering of spin waves and phonons on the 
deformation fields produced by the dislocations in 
the body, and not on the cores of the dislocations. 
The mean lifetime of a spin wave under these con
ditions is proportional to ~ -l/2 T-3/ 2 in a ferro
magnet, and to ~-t/2 T-2 (when T » E0) in an anti
ferromagnet; the lifetime of a phonon is propor
tional to ~ -l/2T -2 (~ = dislocation concentration, 
E 0 = activation energy). 

Scattering of spin waves and phonons on dislo
cations plays a substantial role in ferro- and anti
ferromagnets at low temperatures. It turns out 

(where ®N is the Neel temperature), and by pho
nons when ®N > E>n and T < E 0• 

1. HAMILTONIAN FOR INTERACTION OF SPIN 
WAVES AND PHONONS WITH DISLOCATIONS 
IN FERROMAGNETS 

We consider the interaction of spin waves and 
phonons with dislocations in ferromagnets. We 
represent the Hamiltonian of the system in the 
form 

(1.1) 

where the terms on the right are the respective 
Hamiltonians of the spin-wave system (:ff's), of the 
phonon system (.~i'p), of the interaction of spin 
waves with dislocations (Jf'sd), and of the interac
tion of phonons with dislocations (.If pd). 

The Hamiltonian :Yf' s determines the behavior 
of the spin system in the undeformed lattice: 

1• , f 1 oM oM 1 } 
:Jfs = J dv 1 -a;,--::---,-~(Mn) 2 -MH . 

~2 o.r; ax, 2 
(1.2) 

Here aik is the exchange-constant tensor, M is 
the magnetic-moment density, {3 is the anisotropy 
constant, and n is the unit vector directed along 
the axis of easiest magnetization. 

The Hamiltonian for the interaction of spin 
waves with dislocations can be represented sche
matically in the form 

(1.3) 

that in ferromagnets, the basic role in heat con
ductivity is played by spin waves when T « ebf®c 
and by phonons when T » E>b/E>c (®n = Debye tem
perature, E>c = Curie temperature). In antiferro
magnets, the basic role in heat conductivity is 
played by spin waves when ®N < E>n and Eo < T where the first term, Jf'~fJ, describes the interac-
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tion of spin waves with the deformation field pro
duced by the dislocations in the body, and the sec
ond term describes their interaction with the dis
location cores. To calculate JC ~~, we shall start 
from the Hamiltonian of magnetostrictive interac
tion 

where E ik is the dislocation deformation tensor, 
and where y ik(M) and 'Yiklm(M) are the magneto
striction-constant tensors; the first of these de
scribes magnetoelastic effects under homogeneous 
magnetization, the second under inhomogeneous. 
In the isotropic case, 

Yik(M) = yoM;Mk + Y1M26;k, 

Elca2 [ 1 J Yi'<lm (M) = ~-tMo _ 2 P1 ( 8n6km + 6;m6kz) + P~8ik0lm (1.5) 

where the constants y 0, y 1, {31> and {3 2 are of or
der unity, M0 is the magnetic-moment density at 
saturation, a is the lattice constant, and !J. is the 
Bohr magneton. It must be mentioned that in for
mula (1.4) the integration is extended over V', the 
whole volume of the crystal with the exclusion of 
the dislocation cores. An expression for the Ham
iltonian Jf~~ can be obtained by supposing that 
near the axis of the dislocation, there is a region 
with altered values of the exchange constants O'lk• 
but with O'lk ~ O'ik: 

N.P (n)- 1 ~I ~(V) 8M oM dl'· 
Of.;sd -- .L.J J a-zk ~~ , 

2 v OX; axk 
v v 

(1.6) 

here the integration is extended over the volume 
V v of the core of the v-th dislocation, and the sum
mation is over all the dislocations in the ferro
magnet. 

The Hamiltonian Jtpd in the expression (1.1) 
describes the scattering of phonons on dislocations: 

:Je pd = ~ ~ dV Aiklmnp e;k Uzm Unp + :Je pd(n), (1. 7) 
Y' 

where Aiklmnp is a tensor that describes the 
anharmonicities in the crystal. The Hamiltonian 
."/(~~ can be obtained by supposing that along the 
axis of a dislocation, there is a region with con
stant but somewhat altered density p' and elastic 

constants Alklm (p' ~ p, 1\lklm ~ Aiklm): 

1 ~ I ' . I(V) :Je pa\n) ::;:::; 2 .L!, J dV (p (v) u;2 + Aiklm U;k Uzm.). 

'V v, 
(1.8) 

The tensor E ik(r), in the isotropic case, can be 
represented in the form[ 4J 

1,\:, } +- J ( b;<vJ [m]k + bk(v) [m];) R-2 dl . 
2 D 

v 

(1. 9)* 

Here the line integrals are extended along the dis
location lines D; b<v> is the Burgers vector of the 
v-th dislocation; R = r- r' (r' is the position vec
tor of a point lying on the dislocation axis); 
n = RR-1; y2 =77/(/\+ 277) (/\and 71 are the Lam~ 
constants); T is a unit vector tangent to the dis
location axis at the point r'. The Fourier trans
form of E ik has the form 

e;k ( q) = ~) e;k (r) e-W dV 

= - q ~ Cf!iklm ( q0) ~ bz<vl T m(v) ( q) e-iq/v), 

v 

(1.10) 

( 1.11) 

T\v) = ~ T;e-iql dl. ( 1.12) 
Dv 

Here r<V> is the position vector of the v-th dislo
cation, q0 = qq-1, eikl is the completely antisym
metric tensor of third rank, and V is the crystal 
volume. 

We shall write the Hamiltonian (1.1) in terms 
of the creation and annihilation operators ak and 
ak of spin waves with wave vector k, and of the 
corresponding operators bfs and bfs of phonons 
with wave vector f and polarization s. It is well 
known (see, for example, [ 5 J) that 

(1.13) 

and 

*[nr] ~ n X r. 
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where1> Wfs and efs are the energy and the polari
zation vector of a phonon. On using formulas (1. 2), 
(1.3), (1.13), and (1.14) and retaining terms quad
ratic in the spin-wave operators, we get 

(1.23) 

(1.24) 

:JC. = ~ e(k)ak+ak, 
k 

fffsd = ~ <l>kk'ak+ak' +h. c. 
kk' 

(1.15) where q = f - f', a1 and a2 are constants of order 
unity, and c is the speed of sound. We remark 
that in formula (1.20) the amplitude x<f> describes 

(1.16) the scattering of phonons on the deformation field 
of the dislocations, whereas x<n> describes the 

Here cl>kk, = cl>~k' + cl>~,; cl>~, and cl>~~' have the 
form 

(1.18) 

in which q = k - k', 

J<v>(q) =: ~ dVe-iqr<">, 
"v. 

and the functions cpjp and cPjp are 

'"(pjp = {2[y2- 3(y2- 1)q.02] 

(1.19) 

The amplitudes ci>k~' and cl>~, in these formulas 
describe the scattering of spin waves by the dislo
cation deformation field and by the dislocation 
cores, respectively. It can be seen from formula 
(1.17) that when kR » 1 and ak « 1 (R = a charac
teristic dimension of a dislocation loop), I q,W, I 
» I ci>kW' I; that is, the fundamental role is played 
by the scattering of spin waves by the deformation 
field produced in the body by the dislocations. 

Similarly, by use of the expressions (1.6), (1. 7), 
and (1.14), we write the Hamiltonian :Ytpd in the 
second -quantization representation: 

:JC pel = ~ )(.fs, f's' brs+ br's' + h. C. (1. 20) 
!sf's' 

here X = x<f> + x<n>; 

U> ic{if , 
Xis, i's' =- -qVX;p(f,f) ~b/">Tp<"l(q)e-;qr{Y), 

" 

(1. 21) 

x~:,> "•' = c"'f:f ;~ x<">(f, f') Vv/<">(q)e-iqr<">, 
v 

(1. 22) 

1 )We use a system of units in which Planck's constant 
h = 1. 

scattering on the dislocation cores. Terms corre
sponding to phonon -phonon interaction have been 
omitted. 

The fundamental contribution to scattering 
processes is made by phonons with energy enaf 
...., T, where en = c/a is a temperature of the order 
of the Debye temperature. If af « 1, the scatter
ing of phonons on the cores can be neglected. In 
this case the Hamiltonian fffpd has the form 

:JC pd ~ ~ x<n, f's'btsbf's' +h. c. (1. 25) 
ls, f's' 

2. KINETIC EQUATIONS FOR PHONONS AND 
SPIN WAVES 

If we know the interaction Hamiltonian in the 
second-quantization representation, 

:JC;nt = :JCsd + :JCpd, (2.1) 

we can determine the heat-conductivity coefficient 
of the ferromagnet so far as it is due to scattering 
of spin waves and phonons on dislocations. For 
this purpose, we write the kinetic equations that 
determine the distribution functions of the spin 
waves nk and of the phonons Nfs in the presence 
of a weak temperature gradient: 

nk0(nk0+ 1)ekT-2(vkVT) = ~k st = Lk8d{n}, 

N~.(M, + 1) wr.r-2 (c1.VT) := ·N:,t := Lf: {N}, (2.2) 

where vk = oE"k/ok is the group velocity of a spin 
wave, Cfs is the velocity of a phonon with polariza
tion s and wave vector f, and n~ and N~s are the 
equilibrium distribution functions of the spin waves 
and of the phonons. 

It is easy to determine the collision integrals 
L, once we know the probabilities of scattering of 
spin waves and of phonons on dislocations. We get 

Lksd {n} = 2:n: ~ I <l>~k' 12 (nk'- nk) b ( E~;.•- Ek), (2.3) 
k' 

f's' 
(2.4) 
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where the line denotes an average over the random 
distribution of dislocations in the body. The life
times of a spin wave and of a phonon are, respec
tively, 

1/rk•d = 2n ~ !<D~,I 211(ek'- ek), 
k' 

(2.5) 
f's' 

(We assume that the length of the free path l of a 
quasiparticle is larger than the mean distance d 
between dislocations.) 

The averaging reduces to a determination of the 
average of the expression 

~:b/Vlbh.(v')]'1(v) ( q) T m(v'J* ( q) exp { -iq (r(v) _ r(v'))} 

vv' 

(2.6) 

The asterisk serves to denote the complex conju
gate. For simplicity, we consider dislocations of 
circular form. Then we find 

1 

Tz<vJ(q)T m(v)* (q) = 2;n;2R(v)2(11zm -qNm~)~ l2(ZqRx)dx, (2. 7) 
0 

where R< v> is the radius of a dislocation loop and 
J 2 is the Bessel function of second order. On us
ing formulas (2. 6) and (2. 7) and supposing that 
kR » 1, we get for the values of T kd and T F: 

1 ( b(v)_R(v))2 
--d ~ 8c(ak)3 ~ V , 

't'ks v' a 

(2.8) 

If the distance between dislocations is of the order 
of the dislocation dimensions, then the expressions 
(2.8) have the simpler form 

1 /'t'k 8d ~ 8c(ak)36'"a, 1 /'trpd ~ 8D(af)26'i•a., (2.8') 

where ~ = (n/V)213 is the dislocation concentra
tion; n is the total number of dislocations in the 
volume of the crystal. 

On averaging 1/T over the equilibrium distribu
tion n°, N°, we find the mean lifetime of spin 
waves and of phonons with respect to scattering of 
them on dislocations: 

1 /T;"d = 8c(T /8c)%6'1za, 1 /'t'Pd ~ 8D(T /8D) 26''•a. (2.9) 

3. COEFFICIENT OF HEAT CONDUCTIVITY 

We shall now proceed to the determination of 
the spin (K8 ) and phonon ( Kp) heat conductivities in 

a ferromagnet with dislocations. For this purpose 
it is necessary to solve the kinetic equations (2.2). 
We shall seek a solution of these equations in the 
form 

Ilk= nk0 + nk0 (nk0 + 1)ekG(ek)T-2 (kVT), 

Nr, = M. + Ms (M .. + 1)wr,F (wr,) r-2 (fVT). (3.1) 

The coefficients of heat conductivity are expressed 
in terms of the functions G and F in the following 
manner: 

Xs =-~_!___I(~ Y nk0 (nk0 + 'l)G(ek)dk, 
3 (2n) 3 J 1' ; 

Xp = -~ __ _!__ Y ~ (Wrs )\3 Nr,O(Nrs0 + 1)F(wr.)df. 
3 (2n) 3 "-' • T · 

s (3.2) 

On solving Eqs. (2.2) for the functions G(€) and 
F(w), we get 

G-1 (ek) ~ 6(ak)2, F-1 (wrs) "'s(a/) 2• (3.3) 

Finally, on substituting (3.3) in (3.2), we find 

8c ( T ''" 1 
Xs ~- a) -2- (when H = 0)' 

a uc, a 6 
(3.4) 

(3.5) 

The whole coefficient of heat conductivity of the 
ferromagnet is 

x = x.+xp. 

From formulas (3.4) and (3.5) it follows that at 
temperatures T « E>b/E>c the heat is transported 
mainly by spin waves, at T » E>b/E>c mainly by 
phonons. In a magnetic field, Ks has the form 

x2dx } . (3.6) 
(ex -1) (x- J!H/T)'Iz 

If the inequality t.tH » T is satisfied, then the spin 
heat conductivity will decrease exponentially with 
increase of the field H: 

x, ~ Be (J!:_l! )3 0_!_ )'1•_:_-JJ.HIT (S. 7 ) 
· a \ T \'ec 6a2 

This means that the fundamental role in heat
transport processes will now be played by phonons. 

We shall compare the heat-conductivity coeffi
cient K thus obtained with the heat-conductivity 
coefficient produced in a ferromagnet by umklapp 
processes, and also by scattering of spin waves 
and phonons on impurities. On the basis of the re

sults of references [ 31 and [ 61 , the heat conduc
tivity will be determined by the following formulas. 

A. Impurities paramagnetic: then 
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X~~~ (!_)2 
• 

a Eln ' 

Eln ( T ) 2 1 we get x ~ - - -;:--,-- ; 
a EJ n ~,;a-

Elc ( T )2 
X~--

al;,p Elc.· ' 

and if £a2 ~ ( 112 )
2 Elc (_!__Y i;,p, Eln > Elc 

Elc. Eln , Elc; 

X~ (~~)2~. 
112 al;,p 

B. Impurities diamagnetic: then 

4) when £a2 > ( e~ r 1;,, Eln ~ ec, 

Elc T 
x~-ln-·· 

ar;,d ~-tMo' 

( T )''' ( T ) 5) when £a2 > -- ln-1 - r;,d, Eln>Elc 
\ Elc ~-tMo 

x ~ Elc (_!_ f'_i_ 
a Elc J £a2 ' 

(3.8) 

(3,9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

In formulas (3.8) to (3.16) the following notation 
is used: tp and td are the concentrations of para
magnetic and diamagnetic impurities, whereas !;" 

is the total concentration of impurities with allow
ance for atoms of the rare isotope; J 12 is the ex
change integral between paramagnetic impurity 
atoms and nearest neighbors of the basic material. 

According to [ 6 J, the value of the heat-conduc-

tivity coefficient produced by umklapp processes 
is 

x ~ 1/ 9mc2 (Cp+2C.) 2a5 exp (nEln/T), Eln~Elc, 

x~ (T/a)exp(n2Elc/T), Eln>Elc, (3.17) 

where Cs"' a-3 (T/®c)312 and Cp "'a-3(T/8n)3 are 
the heat capacities of spin waves and phonons, re
spectively. On comparing the expressions (3.17) 
and (3.4), one can observe that the scattering of 
spin waves and phonons on dislocations plays a 
fundamental role when the following inequalities 
are satisfied: 

b) if Eln < (.<Jc. T ~ El2n / Elc, then 

~az~ Elc. (·_8c f'exp (- _nen l; 
mcz . T j , T ,: 

c) if en> Elc. then 

( T \ •;, ( n2<9 c ) 
(;a2 "p - ) exp - -- . . 

'Be· T 

(3.18) 

(3.19) 

(3.20) 

4. HAMILTONIAN FOR INTERACTION OF SPIN 
WAVES AND P HONONS IN ANTIFERRO
MAGNETS 

We shall consider the scattering of spin waves 
on dislocations and shall estimate the spin heat 
conductivity and relaxation time in antiferromag
nets. 

In a uniaxial antiferromagnet, whose ground 
state in the absence of an external magnetic field 
H is determined by two compensated sublattices,[7] 
the magnetic moments M1(r) and M2(r) are anti
parallel and are along the axis of easiest magneti
zation. The Hamiltonian of the system of spin 
waves, phonons, and dislocations has the form 

df = ,1fs + dfsd + ;Je pd, (4.1) 

where 

dfs = \ dV f ~ f( oM, )2 +( ~Mz \2l +a' oM, ill\'~+ 6 
. l2 L . OX; OX; j . OX; OX; 

13 X (M,Mz) - 2 [(nM1)2+(nMz) 2]-j)'(nMl)(nM2) 

\ 
- (M 1 + Mz, H) J. (4.1') 

Here the constants a, a', and o are connected 
with the exchange interactions within and between 
the sublattices of the antiferromagnet; {3 and {3' 
are magnetic anisotropy constants and are d~,;,e to 
relativistic interactions (spin-spin and spin-orbit); 
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n is the unit vector directed along the z axis, the 
axis of easiest magnetization. Furthermore 

where 

(4.2) 

(4.3) 

As in ferromagnets, we shall consider the me
dium isotropic in its magnetoelastic properties. 
Then we get for the magnetostriction tensors 

y;k(M1, Mz) = yt(M1;M11, + MwVz~~.)+ Yz (M1;M2k+ M1~~.M2i) 
+ o;~~.[oy3(M1Mz) + Y•(M12 + Mz2) ], 

(4.4) 

where a 11 = a 22 = a 1, a 12 = a 21 = af; the quantities 
Yi> {31 and {3 2 are dimensionless and have order of 
magnitude unity; j, j' = 1, 2; Ojk is the Kronecker 
symbol. 

We write the Hamiltonian (4.1) in terms of the 
generation and absorption operators for the spin 

+ + waves, cjk and cjk• and for the phonons, bfs and 
bfs· On going over from the sublattice magnetic
moment operators to the Holstein-Primakoff 
operators [ 8 J 

( j = 1, 2) and on using formula (1.14) and the ca
nonical transformation 

+ 
alk = U1!Cfk + V12*c2, -k, IZ:!k = ~Czk + V2f°Cl,::.k, (4.6) 

where u and v have the form 

we get 

8 
Uu = Uzz = [Bz- (A!-=:_ e1)2J'h' 

2fts = :'3 EjkCjk+Cjk, 

jk 

(4. 7) 

(4.8) 

here E1, 2 = [®~(ak)2 + E8J 1/ 2 ±J.lH is the energy of 
a spin wave, ®N = (J.!M0/a)[26(a- a')] 112 is a 
quantity of the order of the N~el temperature, 
Eo = J.!M0[26(f3- {3')] 1/ 2 is the activation energy of 
a spin wave at H = 0, and 

The amplitudes '1< and cp describe magnetoelas
tic effects for inhomogeneous and homogeneous 
magnetization, respectively, and have the form 

-qr!i, = '¥~2k' = (a1 - a/)kk' 

X [~1k;0k11. 0e;k ( q) + ~2 (k0k0') Eii' ( q)] 

X[u•(k)u(k') + v*(k)v(k')], 

(4.10) 

<p~k' = <p;2k' = Yl[E+- ( q)- Ezz ( q) J[u* (k) u (k')1+ v* (k) v ( k')] 

+ Y2{2u* (k) v(k') E+- (q) + [u* (k) u(k') 

+ v• (k) v ( k') ]ezz (q)} + ~ 15y3e;; ( q)[u• (k) u (k') 
2 

+v• (k)v(k') + 2u· (k)v(k')], 

+vz[u" (k) u (k') +v• (k) v (k')]}. (4.11) 

Here q = k- k'; the symbols + and - designate 
the circular components of the tensor E ik (a± 
=(ax± iay)/vlz). 

5. THE COEFFICIENT OF HEAT 
CONDUCTIVITY 

We now compute the spin coefficient of heat 
conductivity and the mean relaxation times of the 
magnetic moments of the sublattices. On following 
the usual procedure for determining the mean re
laxation time, we can find the change of the num
ber of spin waves in unit time: 

Lki {n} = 2n(~-tMo) 2 ~·l'¥t{,+cpJf,l 2 
k'j' 

(5.1) 

(5.2) 

We consider the case in which T » J.!Mo; then 
in formula (5.2), the quantity cpjj'kk, can be neg
lected, and we get for the lifetime of a spin wave 



RELAXATION AND THERMAL CONDUCTIVITY IN MAGNETIC MATERIALS 629 

the equation 

1 1 
- = -- = 2lt(f.-tMo)2 ~·j'¥kk'11 l 26(ek.'1- ek1). (5.3) 
01k 't'2k k' 

On substituting the values of the amplitude >Itkk, 
in the expression (5. 3), we find 

1 n(M)2 2 

't'k ""6 ° [u(k) 2 + v(k)2]2(a1·- a/)2k• ~ ~fn(v)Bn, 
n=O v 

(5.4) 
where Ii:> is given by 

1 1 

ln(")= ~ dx ~ dyl2[2'hkRMx(1-y)'l•](1-y)n-1• (5.5) 
-I 

The coefficients Bn are of order unity. 
On taking account of the relation (5.5), we can 

write the value of 1/T lk in the form 

1 eN 
-~eN["" 2( k) 2 + 21 ,1 (ak)3s'ha. 't'1k o!:'JN a eo ' 

(5.6) 

For the mean time of scattering of spin waves on 
dislocations, in the absence of a magnetic field, 
we have 

(5.7) 

(5.8} 

We shall consider the heat conductivity of an 
antiferromagnet in a constant magnetic field 
0 < H < H1, where H1 = M0[26( {3- {3')] 1 / 2. Solution 
of the kinetic equation. 

nkl(nk/+1}eikT-2 (vikVT) =Lik{n} (5.9} 

leads to the following value of the coefficient of 
heat conductivity Ks (see the analogous calculation 
for a ferromagnet): 

Xs =eN (2. \2
.-1-, T~eo. 

a ·.eN ) sa2 
(5.10)* 

As is seen from the expression (5.10}, the heat 
conductivity of an antiferromagnet increases with 
increase of the field and reaches a maximum at 
the phase-transition point of the first kind (H = H1). 

This is explained by the fact that on one of the en
ergy branches there is a decrease of the activation 
energy, which leads to an increase of the number 
of spin waves participating in the transport of heat. 

*ch =cosh. 

As in the case of a ferromagnet, we shall com
pare the coefficients of heat conductivity Kp and 
Ks determined by formulas (3. 5) and (5.10) with 
the appropriate coefficients of heat conductivity of 
the antiferromagnet (see [ 9• 10 J ). Scattering of 
spin waves and phonons on dislocations will make 
the chief contribution to the heat conductivity if 
the concentration of dislocations satisfies the fol
lowing inequalities: 

1) if the impurities are diamagnetic and Eo« T, 
eD »eN, then 

2) if the impurities are paramagnetic and 
Eo« T, eD «eN, then 

and if Eo« T, en »eN, then 

sa2 ~ ev -'.!~ (_!_ )3~ 
pc2 eN eN · a3 ' 

(5.11) 

(5.12) 

(5.13) 

where u is the value of the spin of the paramag-
netic impurity. 

For umklapp processes we have: 

a) if eN » eD , then 

;az ~ ev ( ev )\xp ( _ nev ) _!_; 
pc2 T T a3 

b) if eN « eD and T » E0, then 

sa2 ~ ( e; r exp (- lt~N ) ; 

c) if eN « eD, T « E0 , and 

then 

(5.14) 

(5.15) 

( eD )6( 80 )'f, (eN\';,. { -:neN+eo-!J.fl) 
sa2~- ,- -1 exp ~~· eN ' eN . ·, T ; T f, 

(5.16) 

.ev ~ (_!__) 'h exp ( eo- IJ.H ) , 
eN ~ r 

then 

sa2~ ev ( ev )'exp (- nev )~. 
pc2 T T . a3 

(5.17) 

In conclusion, the authors thank E. M. Pikaleva 
for assistance in the research. 
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