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A one-dimensional theory of ion-acoustic waves in a plasma is developed in the quasilinear 
approximation by taking collisions into account. An explicit expression is found for the spec­
tral density of ion-acoustic waves as a function of time for a current plasma which is un­
stable in the linear approximation, and which is located in an external electric field. It is 
shown that in a stationary state, the wave intensity is determined by the magnitude of colli­
sion damping and Landau ion damping. The case of the propagation in a plasma of intense 
ion-acoustic wave is also considered. It is shown that the character of its damping also 
depends significantly on the collision frequency. 

As is well known, linear theory enables us to 
describe the propagation of waves in a plasma 
only in the case in which their intensity is suffi­
ciently small so that the effect of the waves on 
the distribution function of the particles can be 
neglected. If the intensity of noise (waves) in a 
plasma appreciably exceeds the thermal noise, 
then such a neglect is generally invalid and it is 
necessary to also take into account the scatter­
ing of particles by the plasma noise, that is, the 
inverse effect of the plasma waves on the distri­
bution function of the particles. Account of this 
effect of the waves on the distribution function in 
lowest order in nonlinearity is the content of the 
so-called quasilinear approximation, [1] the use 
of which is essential in the case of systems that 
are unstable in the linear approximation. 

A sufficiently detailed analysis of the one­
dimensional model of the beam instability of 
Langmuir waves was worked out by Vedenov [1] 

within the framework of the quasilinear theory; 
the character of their damping in a plasma with 
account of electron-ion collisions was also inves­
tigated. The present research is devoted to a 
similar analysis of the development of ion-acoustic 
instability in a plasma located in an external elec­
tric field, and to the investigation of the character 
of the damping of ion-acoustic noise in a current­
free collision plasma. 0 Here, as in [1], we re­
strict ourselves to the study of a one-dimensional 
model, which allows us to obtain an analytic solu-

l)Without account of collisions, the quasilinear theory of a 
plasma located in a strong electric field was developed in the 
researches of Field and Fried[2] and Korablev and Rudakov.['] 

tion of the problem very easily. 
Thus we consider a nonisothermal electron-ion 

plasma located in an external electric field E. We 
assume for concreteness that the velocity distri­
bution of the ions is Maxwellian with a tempera­
ture equal to Ti, and the electron distribution is 
close to Maxwellian2> and is characterized by a 
temperature Te » Ti. We denote by f(v, t) the 
one-dimensional electron distribution in the plas­
ma, normalized to unity, and by w( s, t) the one 
dimensional energy spectral density of ion-acoustic 
noise, so normalized that the total noise energy 
density is 

<W(t)= Sasw(s, t), 

where s = w(k)/k is the phase velocity of ion­
acoustic waves. Then the initial set of nonlinear 
equations which determines the behavior of the 
function f(v, t) and w ( s, t) will have the form 
(see, for example, [6]) 3> 

of of a of 
--at+r ov= iJvD(v) ov +St(/), 

ow iii= [y.- y] w, 

(1) 

(2) 

2 >u runaway electrons are neglected, [4 • 5] the electron dis­
tribution function can be regarded as Maxwellian in first ap­
proximation because, as we shall see below, the presence of 
noise leads only to a small change of it in a small region of 
velocities of the order of the phase velocities of ion sound. 

3)The equations of the three-dimensional problem can also 
be reduced to such a form in the case of a strongly magne­
tized plasma if H II E and eH/Mc > y'm/M w 0 • Here k and v are 
the components of the corresponding vectors parallel to the 
direction of the external fields E and H. 
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where the first component on the right side of 
Eq. (1) is proportional to the function 

:n:l)-2 v [sm2- v2]'/, 
D(v) = --wo w(v), 

nm Vre 

(3) 

and takes into account the scattering of the plasma 
electrons by the ion-acoustic noise and the second, 
which has the form 

St(!) = Ve!__ [vt + VTe2 at J av av , 
takes the electron collisions into account. The 
quantity Yo in Eq. (2) is the growth increment 
(damping decrement) of linear theory, and is 
equal to 

(4) 

(5) 

while the component y = Yi + Ycoll takes into ac­
count the Landau damping of ion sound by ions, and 
by ion-ion collisions, C7J respectively: 

In Eqs. (3)-(6), m-mass, n-density, w0 -Lang­
muir frequency of the plasma electrons, z and M­
the charge number and the mass number of the ions, 
v?:re = Telm and v?:ri = TiiM -the squares of the 
thermal velocities of the electrons and ions, ve and 
Vi -the frequencies of the electron and ion colli­
sions, sm = ..j zTeiM -the maximum possible ve­
locity of sound waves and, finally, r = eEl m, o2 

= zmiM, a 2 = zTeiTi. 
We denote by y~ = -ri!2 o-2v1? ks3(u- s) the in-

e 
crement (5), found according to the linear theory 
( u = rIve). Analysis of Eqs. (1) and (2) shows 
that the process of development of the instability 
(or absorption of an intense wave in the case of 
the absence of an external field) can develop in 
two stages. During the course of the first, com­
paratively brief stage, which lasts a time of the 
order of several reciprocals of the increment y~, 
the noise intensity grows very rapidly, almost ex­
ponentially, and an explicit dependence of the dis­
tribution function on time (that is, the component 
afl at) is very significant. Collisions play practi­
cally no role here. 

Next, a second, longer stage of development of a 
certain stationary (or, in the absence of an external 
field E, quasistationary) distribution sets in when 
the explicit dependence of the distribution function 
on time (that is, the component au at ) becomes in-

significant, and the fundamental role is played by 
the collision of electrons with ions and their scat­
tering by waves. Just this second stage will be the 
basis for the present investigation. 

Simple estimates show that if the intensity of the 
noise is sufficiently large, so that4> 

where 

Ve VTe \ Ve T ( ) wo(s) = --62nT.---- ff!o = .l wads~ -On e, 8 
:n:wo sism2- sz' • Wo 

then the component aU at in Eq. (1) can be ne­
glected in comparison with the other terms. In 
this case, Eq. (7) is easily integrated, and we find 

[ 1 " u-v J f(v, t) =A exp -- ~ -~---dv , 
· Vre2 [1 + wl Wo] u 

1 r 
A~--- U=-

i2n Vre ' v, 
(9) 

Equation (2) takes the form 

aw Wcoll- W 
-=yw ' at Wo + W 

(10) 

where w0 was given by Eq. (8) and 

Wcoll(s) = Wo [ ~80 - 1] 
= {) nTe {~ Ve~J~=~s) _ ~_\'e__ Sn_,2_}. ( 11) 

Sm iin y Sm2 :n: (oJo s ism2- sz 

Equation (10) is easily integrated and for w » w0, 

we find 

w(s, t) = Wcoll(s) [1- e-v(s)t] + Winite-v(.'lt, (12) 

where by winit( s) is meant the initial value of the 
noise. 

It follows from (12) that account of absorption 
y leads to a limitation of the amplitude of ion­
acoustic noises and to the establishment of a cer­
tain stationary state characterized by the spectral 
distribution (11). The characteristic time for es­
tablishing the stationary state is determined by the 
quantity y, that is, by the collision damping and 
Landau ion damping, which also determine the 
corresponding upper and lower (in s ) boundaries 
of the spectrum. Here the total noise energy in the 
stationary state for u ;:::_ sm is equal to 

r U Ve 
&coli= 1 ds Wcoll (s) ~ nT,63--~ -. 

• Sm y(sm) 
(13) 

4 JThis condition, as is easy to see, is essentially equival­
ent to the requirement that the intensity of the ion-acoustic 
noise in the plasma greatly exceeds the level of thermal noise. 
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Since the quantity s is proportional to the colli­
sion frequency Ve over a wide range of values of 
s, 5> it follows from (11) and (13) that the noise in­
tensity of the stationary state depends only on the 
ratio u = eE/mve. In other words, in the case of 
a sufficiently weak electric field E « mvTeVe I e, 
when one can neglect the runaway electrons, the 
maximum noise energy in the stationary state is 
practically independent of the collision frequency, 
and is equal to6 > 

max Ve ( mT; )'f, it coil~ nTelJ2--- ~ nTe --. (14) 
y(sm) . AlTe 

We now turn to the investigation of the character 
of the damping of intense ion-acoustic waves in a 
plasma without an external electric field, and in 
one excited by any sort of "external" source. In 
this case, setting u = 0 in Eqs. (9) and (10), we find 

f(v,t)=-_1--exp{--____1:_-~--~~--}, (15) 
)'2n: Vre Vre2 • [1 + w/wo] 

0 

8w WoW 
- = Ys 0 ----- yw ~ -a- yw, 
8t Wo + W 

nTe s2 
a = - Vs 0Wo = 63ve -------=---. 

)"2n: Sm2 

(16) 

Similar to the above, these equations are valid only 
for sufficiently large initial noise intensities, when 
after a time ~ 1/ I y~ I Eq. (15) will be valid for the 
distribution function (or, for example, for the 
boundary condition when an "outside" source of 
noise acts for a sufficiently long time ) . 

Denoting by win the value of the spectral den­
sity of the noise at the moment t = 0, and taking 
it into account that in the case of interest to us, 
w » w0, we find from (16) 

w(s, t) = Winite-vt- ay-1[1- e-vt]. (17) 

Thus we see that for sufficiently high intensity 
the noise is damped more slowly than follows from 
the linear theory (under the condition of course 
that y~ » y). Here, if win it » a/ y, then the damp­
ing has an exponential character. In the inverse 
case, when win it « a/ y, the intensity of the noise 

S)For a sufficiently strong nonisothermal process, the 
Landau ion damping Yi is important only in the region of small 
phase velocities s- smin ~ 2vTi ln(a'/8). 

6)We emphasize that the theory developed here is valid 
only for sufficiently weak fields E << mVTeve/e when the 
number of runaway electrons is exponentially small. In the op­
posite case, all the electrons with v > Sm enter into a regime 
of continuous acceleration: this follows from the fact that for 
v > Sm we have w(v) = 0. 

falls off according to a linear law similar to what 
was obtained in reference [ 1] for the Langmuir 
waves. 

APPENDIX 

In the considerations given above, we have com­
pletely neglected the nonlinear interactions of the 
waves with one another (nonlinear damping or s -s 
scattering) inasmuch as such interaction is absent 
in the one-dimensional model. However, taking it 
into account that the results obtained in this approx­
imation can usually be of value even in the more 
general case, it is of interest to obtain the condition 
under which such a neglect is appropriate. 7 l This 
condition evidently is identical with the condition of 
smallness of the "nonlinear" increment Yn in com­
parison with Ys· Using the expression for the non­
linear increments [B,B, 9] and assuming for the esti­
mate k = w0 /vTe• s = Sm, and taking (13) into ac­
count, we find 

WoVe ( T;) u Yn1Ys=(2n:) 28o2 - 2-64 - -, 
y Te Sm 

(A.1) 

where e0 is the maximal angle between the wave 
vector k and the vector of the electric field E for 
which the vibrations are still unstable. Then, tak­
ing it into account that y;::::; 6(Te/TI) 112ve, we find 
that the nonlinear interaction of the waves is unim­
portant if the frequency of the electronic collisions 

(A.2) 

On the other hand, by virtue of the inequality 
y « y~, we should have the condition 

u ( mT )'h 
Ve~--i --' Wo. 

Sm ·. MTe 
(A.3) 

It is seen from a comparison of (A.2) and (A.3) that 
there is a sufficiently broad region of values of the 
parameters when the account of the nonlinear inter­
action is unimportant. In the case of sufficiently 
small values of the collision frequency, when con­
dition (A.2) is violated, the nonlinear damping must 
be considered and it can have a significant effect on 
the character of the stationary spectrum (if such 
is present). 

In this connection, we want to make a remark in 
connection with the solution found in [ 9] (see also 
[ 10]) for the spectral density of ion -acoustic noise, 

7lwe note that Petviashvili, [9] in a paper devoted to the 
study of the stationary spectrum of ion-acoustic waves, uses 
for the increment Yo an expression obtained in the case of the 
one-dimensional model. 
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which takes into account the nonlinear damping; in 
our view, this is 1 in error. 

In order to show this, we shall start out from a 
somewhat more general equation having the form8 > 

k'A. + y. (k, x) W (k, x) 

a I 

+ ak2W ( k, x) f}k k3 ~ dx'x (x, x') W ( k, x') =' 0. (A.4) 
-1 

Here A. and a are certain constants whose 
specific values are of no importance for us, 
Ys ( k, x) is the increment of the quasilinear the­
ory, W(k, x) is the spectral energy density of the 
ion-acoustic waves, x is the cosine of the angle 
between the wave vector k in the direction of the 
external electric field, while the kernel is 

x(x, x') = 1 + 5/ 7P2 (x)P2 (x') - 12/ 7P 4(x)P4 (x'), (A.5) 

where Pn ( x) is the Legendre polynomial of order 
n. 

For a value of the parameter A = 0, we obtain 
the equation used as the starting point in the re­
search of [9]. This equation was solved by aver­
aging over x, which, in our opinion, is incorrect, 
because of the degeneracy of the kernel K(x, x'). 
Actually, taking Eq. (A.5) into account, it is not 
difficult to establish the fact that the solution of 
Eq. (A.4) for the kernel K(x, x') should have the 
form 

A.k 
W(k,x)= · ., (A.6) 

A +BP2 (x)+CP,.(x)-y.(k,x) 

where the quantities A, B, and C are functions 
only of k and not x. 

It is then seen that as A - 0 the solution W ( k, x) 
also tends to zero. An exception exists only in the 

8)We note that in the case of axial symmetry, the equation 
for W reduces to such a form if one also takes into account the 
processes of spontaneous emission (see for example, [6]). 

very special case in which the increment is 

that is, in partk:ular, it is an even function of x. 
Consequently, the solution obtained in [9] is 

generally incorrect because the equation used 
there for A= 0 is the same as Eq. (A.4) which 
has only a trivial solution in this case. 9> 
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9>a is possible that account of absorption in the walls and 
the dependence of W on the spatial coordinates will also lead 
to a solution of the type obtained in [9 ]. However, this is 
nowhere evident and requires additional investigation. 


