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We consider the effect of Coulomb collisions on plasma oscillations with frequencies and dec­
rements that depend on the initial perturbation ("singular" solutions). In total absence of 
collisions, such oscillations may decay at a slower rate than oscillations with a Landau decre­
ment. It is shown that Coulomb oscillations, even of very low frequency (much lower than the 
Landau decrement) result in a very rapid decay of the singular solutions. 

As is well known, the general solution of the 
linearized equations for plasma oscillations1 > 
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where fo(v) is the equilibrium distribution func­
tion; Ek(t), fk(t, v) and ~(v) are the Fourier 
components of the field, of the distribution func­
tion, and of the initial perturbation, with 

(1) 

(2) 

(4) 

(5) 

the functions Ek(w) and rk(w) are analytic in the 
upper half-plane. It follows from (3) that the 
asymptotic value of the field is determined, first, 
by the zeroes of the dielectric constant2> Ek(w) 
and, second, by singularities of the functions rk(w), 
which in turn are determined by the character of 
the initial perturbation gk(v). 

If rlk is the root of the dispersion equation 
Ek(w) closest to the real axis, and gk(v) is an 

l)For simplicity we consider throughout electron oscilla­
tions without a magnetic field, and the ions are assumed to 
be infinitely heavy. 

2)We are considering only a stable plasma, since all the 
roots E: k(w) lie in the lower half-plane. 

analytic function whose singularities lie above the 
point nk/k, then the asymptotic form of (3) is 
Ek(t) ~ E0 exp ( -mkt), and describes plasma oscil­
lations with frequency Wk = Re nk and decrement 
'Yk = -Im nk. 

On the other hand if, for example, gk(v) has a 
pole at a point u such that 0 ::::: Im u > Im nk/k, 
then the field has the asymptotic form exp (- ikut) 
and attenuates more slowly than the "plasma" 
term, which attenuates with a Landau decrement 
'Yk· A particular case of this type are the solu­
tions of Van Kampen, [ 2J where Im u = 0, so that 
in general undamped oscillations of frequency 
ku are obtained. Another example are the solu­
tions considered in [ 3• 4 J, where the function ~(v) 
or its derivatives have finite discontinuities on 
the real axis, i.e., they are piecewise-smooth 
functions. If, for example, the n-th derivative of 
the function ~(v) has a discontinuity at the point 
u, and the derivatives of lower order are continu­
ous, then the function rk(w) in (4) has a branch 
point at w = ku, leading in the asymptotic expres­
sion for the field to a term ~ c<n+ll exp (- ikut), 
which should thus prevail over the "plasma" term 
if it is sufficiently large. 

The solutions that have an asymptotic form de­
termined by the initial perturbation gk(v) will be 
called "singular." It is obvious that singular so­
lutions appear when the function ~(v) or its de­
rivatives vary sufficiently rapidly in some small 
interval ov of velocity space. 

We note that even in the case when gk(v) is an 
entire function of v, the term decisive in solu­
tion (3) may be the one depending on the initial 
perturbation. Let, for example, 

g,_(v) = (1/l'n:a)exp [-(v-u)2/a2]. 

then for sufficiently small w the solution (3) can 
be reduced to the form 

603 



604 V. I. KARPMAN 

rh (QA)' 
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For sufficiently small a (ka /2 < - Im Qk) the sec­
ond term in formula (6) can be considerably larger 
than the first in the entire region of t, where the 
field is still not small (although formally there 
exist t so large that the second term becomes 
considerably smaller than the first, these values 
of t are no longer of interest, since the field has 
time to become very small). As a - 0, we obtain 
from this again the Van Kampen solutions. 

2. All this, however, is obtained if we com­
pletely neglect the collisions. In an analysis of 
problems connected with the rate of change of the 
distribution function, it is necessary to bear in 
mind that owing to the diffusion character of the 
Coulomb collisions, the latter smooth out rapidly 
in the abrupt changes of the distribution function. 
In this connection, it is of interest to ascertain the 
influence exerted on the "singular" solutions by 
the Coulomb collisions (in the case when the fre­
quency of the latter is sufficiently small). 

To take the collisions into account, we must 
add to the right side of (2) the Landau collision 
integral. The solution of the kinetic equation is in 
this case a very complicated problem, but the sit­
uation is simplified by the fact that we are inter­
ested in questions connected with a change in the 
distribution function in a relatively small interval 
ov, and with relaxation processes described by 
the collision integral and having a diffusion behav­
ior in velocity space. This enables us to replace 
the exact collision integral by the model collision 
term proposed by Lennard and Bernstein: [ 51 

St {F} = B _!__ (vF + vT2 aF ) ' 
av ' 2 av 

(7) 

where v is the velocity component in the wave 
propagation direction, VT the average thermal 
velocity of the particles, and {3 a certain effective 
collision frequency. Expression (7) retains two 
most important properties of the Coulomb colli­
sion integral; it has a "diffusion" behavior and 
vanishes if we substitute in it the Maxwellian dis-
tribution function 

Taking (7) into account, the kinetic equation 
takes the form 

aj,.(t, v) + ikvj,. + 
at 

eE,(t) fo'(v)= ~~(vf,+_ VT2 8fh) 
m av 2 av 

(8) 

under the initial condition (5). Applying to (8) the 
Laplace transformation 

00 

j,(w, v) = ~ j,(t, v)eiwt dt, (9)' 

oo+iO d 
j,(t, v) = 5 j,(w, v)e-iwt 2: , (10) 

-oo+iO 

where fk(w, v) is analytic in the upper half-plane 
of w, we obtain 

a [ VT2 
- i(w- kv)f,(w, v)- ~~ vj,(w, v) + 

av 2 
aj,. (w, v) J 

av 

(11) 

This equation is easy to solve by taking the Fou­
rier transform in v of both sides. As a result we 
obtain 

00 

j,(w, v) = _ _!_E,(w) ~ G"(w, v, v')fo'(v')du' 
m 

00 

+ ~ G,(w, v, v')gk(v')dv', 
-oo 

(12) 

where Gk(w, v, v') is the Green's function of the 
left side of (11), which takes the form 

00 kfp 
1 (' (' ( ~l' )-iw/~+k'vT 2/2P-1 

G,(w,v,v')=--JdcrJ d't' 1--
2nk , k 

(J 

( 
R(J )iw/P-k'vT'/2~2 [ VT~2 

X 1 _ _1"_ exp i(crv-w')+-4-
k 

X vT~;t _ v~cr2 
_ v~;cr J . (13) 

Going over from u and T to new variables of in­
tegration s and s': 

~l' • ' 1--= e-.,s, 
/c 

(14) 

we obtain 

1 00 00 'k ' 
G,.(w, v, v') =- - ~ ds ~ ds' eXJp [- ~s- -~(1- e-Ps') 

8n ~ 
-oo s 

ikv ( k 2vT2 ) + --(1- e-Bs) + iw--- (s'- s) 
~ 2[3 

(15) 
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We now proceed to calculate the field Ek(t). 
From (~). (9), and (12) we easily obtain 

where 

ER.{w) = r~(w) / ~(w), 

- wo2 oo 

Ek(w) = 1 +- - \ dv h(w, v)fo'(v), k .. 

00 

h(w, v)= -i) Gk(w, u, v)du = 

(16) 

(17) 

(18) 

(19) 

Expressions (16)-(18) are in general similar to 
formulas (3) and (4), which are valid when the col­
lisions are completely neglected. The only differ­
ence is that (17) and (18) contain in place of 
(w- kv)- 1 the quantity Ik(w, v) which goes over 
into (w- kv) - 1 as {3- 0. 

It is easy to verify that for small {3 the quantity 
Ek(w) does not differ qualitatively from Ek(w). In­
deed, substituting (19) in (18) and expanding E'k(w) 
in powers of {3 we obtain 

-i~kwo2 oo.~dvfo(v)[ 2v - 2v2 
] (20) 

(w-kv)" vr2 (w-kv) 3 

The presence of a small addition ~(3 is reflected 
only in a certain shift of the roots of_ the dielectric 
constant. Denoting the new root by Qk• we obtain 
iik ~ wk- i( ')I k + {3 /2), where wk and 'Yk are the 
frequency and damping decrement of the oscilla­
tions in the collisionless theory. Since we have 
assumed that {3 « 'Yk· this correction is generally 
insignificant and we shall neglect it, putting 
?k(w) ~ E (w). 

Of much greater importance for us is the 
change in the analytic properties of the numerator 
in (16) when {3 f 0, and the associated change in 
the asymptotic expression for Ek(t), in the case 
when the initial perturbation changes sufficiently 
radically in a small region. It is easy to verify, 
first, that the function rk(w) is an entire function 
of w, even if gk(v) is a piecewise-smooth func­
tion. To obtain a detailed idea of the behavior of 

the field in this case, let us assume that Ek_1(w) 
can be represented in the form of the following 
partial-fraction expansion: 

I ( 08 
8 w)= aw' (21) 

where Q~r> (r = 1, 2, 3, ... ) are the zeroes of the 
dielectric constant, arranged in decreasing order 
of their imaginary parts. Thus, the value r = 1 
corresponds to the root determining the frequency 
and decrement of the plasma oscillations, that is, 
Q~ > = Qk Substituting (21) in (16) and going over 
to the t-representation, we obtain 

1 dw . 
Ek(t) = J -e-zwtpk(w) 

c 2:rt 

~ 1 1 dw . 1 1'11. ( w) + L.J J -e-'"' . 
r 8' (Qh.(r)) c 2:rt (j)- Qh.(r) ' 

where C is a contour lying above all the points 
Qkn in the w plane (see the figure). 

---------------------c 

-----------------r:, 

(22) 

We now consider the integral under the summa­
tion sign in (22). It can be reduced to an integral 
along a contour cl lying below the point S1f{), by 
adding to the latter the corresponding residue rel­
ative to the pole at the point S1l{ > (see the figure): 

(" .:!:!:!_e-iwt r~~.(w) = -ii'R.(QR.(rJ)exp(-iQk(rJt) 
J 2:rt (J)- Qh.(r) 
c 

+I dw e-iwt r~~.(w) . 
J 2:rt (J)- Qh.(r) 
c, 

(23) 

Inasmuch as in the integral along the contour C 1 

we have Im w < Im Qkr>, we can write 

0 

(OJ - Qk(r)) -t = i ~ exp[i9 ( (J) - n~~.<rJ) ]de. ( 24) 

Substituting now (24) in (23), changing the order 
of integration, and carrying out elementary calcu­
lations, we obtain for the field defined by (22) the 
following expression: 

~ i'k (Qk(rJ) (- iQ (r)t) 
Ek (t) = lh (t) +LJ -.-, (" (rJ) exp h. 

L£ •~h. . 
T 

(25) 
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where Rk(t) is the t-representation for the func­
tion rk(w): 

oo~ dw . 4neN r 
Rn(t) = -f~t(w)e-'"'1 = --- J dvln(t, v)gn(v). 

2n k 
-oo 

h(t,v)= ~ ~:In(w,v)e-iwt= 
-oo 

- iexp { k2vT2 [(1- e-~1)2+•2(1- e-~1) 
4~2 

kv k 2vT2 ]} -i-~-(1-e-P1)-~t . 

(26) 

(27) 

Thus, the problem reduc~s to determining the 
asymptotic expression for Rk(t), and accordingly 
for Ik(t, v) for sufficiently large t. It follows from 
(27) that when t » {3- 1 the quantity Ik(t, v) behaves 
like exp ( -k2v~t/{3). This asymptotic expression, 
however, does not yield useful information on the 
behavior of Ik(t, v) since, as will be shown later, 
Ik(t, v) attenuates within a time much shorter 
than {3-1. 

When t « {3-1 we can expand the expression in 
the curly brackets of (27) in powers of t. Confin­
ing ourselves to the first nonvanishing term, we 
obtain 

!n(t, v) ~ -iexp (-~k2vT2t3 16-ikvt) (t~~~~-1 ). 

(28) 

It follows therefore that Ik(t, v) attenuates within 
a time 

(29) 

Inasmuch as Tf3 ~ ({3/kvT)213 « 1 (for sufficiently 
small f3 ), the approximation (28) is justified. 

Substituting (28) in (26), we obtain 

so that Rk(t) attenuates rapidly within the time not 
longer than the time T defined by (29), no matter 

3 lin order to obtain Ik(t, v), it is sufficient to use the fact 
that the Ik(w, v) are of the form 

~ f( a) eiwa da, 

0 

where f(a) is the exponential under the integral sign in (19), 
but without the terms iwa in the argument. Therefore 
Ik(t, v) = f(t). 

what the distribution function of the initial pertur­
bation ~(v) may be. 

Thus, if the time T is shorter than the recipro­
cal Landau decrement yk1, that is, when 

~I \"k > (y" I kvT)2, 

then the expression for the field (25) for t > T 

takes the form 

E ( ) i'n(Qk) ·g 1 
k t ~ ----e-z h 

ie~t'(Qn) ' 

(31) 

where Qk = Q~> is the root of the dielectric con­
stant with maximum imaginary part, this being 
valid for any form of ~(v). Since the right side of 
(31) is very small compared with unity, the effec­
tive collision frequency {3, remaining small com­
pared with Yk, can at the same time be sufficiently 
large to "suppress" all the singular solutions. 

To understand the physical cause of appearance 
of the rapidly damped factor exp [- (t/T)3], we 
consider in greater detail the evolution of the 
distribution -function term that is determined di­
rectly by the initial perturbation ~(v) (that is, 
the second term on the right side of (12)). Going 
over in (15) to the t-representation and calculating 
the asymptotic value of the Green's function 
Gk(t, v, v') in analogy with the procedure used for 
the quantity Ik(t, v), 4> that is, by expanding the 
argument of the exponential in powers of {3t, we 
obtain 

G" (t, v, v') ~ (2n~vT2t)-''' exp [- (v- v') 2 I 2~vT2t] 

X exp ( -ikvt - ~vT2k2t3 I 24) exp [ ik ( v - v') t I 2] (32) 

(it is easy to verify that, in accord with (19), inte­
gration of (32) with respect to v leads to (28)). 

The product of the first two factors in (32) is 
the Green's function of the diffusion equation, de­
scribing the diffusion spreading of the initial per­
turbation gk(v) with a diffusion coefficient 

(33) 

The third factor in (32) has approximately the 
same time dependence as (28). In order to clarify 
its physical meaning, we note that if there are no 
collisions at all ( f3 = 0) the distribution -function 
term leading to the singular solution would have 
the form gk(v) exp (- ikvt). This expression is an 
oscillating function of the velocity v, the oscilla­
tion frequency in velocity space being kt and in-

4 llf we introduce in (15) a new integration variable a, 
namely s' =a + s, then the transformation to the t-represen­
tation is realized in analogy with the transition from (19) to 
(27). 
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creasing in proportion to the time. The diffusion 
character of the collisions should lead to a rapid 
damping of these oscillations. The characteristic 
damping time T can be obtained from elementary 
considerations by putting D~ (ov) 2 /T, where D is 
the diffusion coefficient (33), and ov is the oscil­
lation period at the instant T, that is, ov ~ (kT) - 1• 

If we determine T from this, we obtain precisely 
expression (29), thus explaining the physical mean­
ing of the rapid damping of the singular solutions. 

3. In connection with the foregoing, we make 
one more remark. As shown in the paper of Bern­
stein, Greene, and Kruskal, [ 6 3 the Van Kampen 
solutions have a simple physical meaning: they 
are obtained from the stationary nonlinear periodic 
waves in a plasma in the limiting case of small 
amplitudes. Namely, if we go in the limit to a 
small amplitude in the expression for the particle 
distribution function in a nonlinear periodic wave, 
then this distribution function, as shown in [ 63 

(see Eq. (21)) will take the form 

f(t,x, v) = fo(V) 

-P e((p-(/Jmin) dfo(v)+Cl5(v-u), 
u- u dv (34) 

where u = w/k is the velocity of the wave, P the 
principal-value symbol, cp - CfJmin) is the pertur­
bation of the potential, and C a certain constant 
connected with the distribution function of the 
captured particles. There are no limitations here 
on the velocity of the wave u, and consequently on 
the frequency for a specified k. 

Expression (34) has the same form as Van 
Kampen's singular solutions. From the results ob­
tained above it follows that when diffusion colli­
sions are taken into account the term with the o 
function in the quasistationary state should vanish. 
But then substitution of (34) in the Poisson equa­
tion (2) makes it impossible for the wave velocity 
u to be arbitrary, since it must satisfy a certain 
relation in the form, as can be easily seen, 
u = wk/k, where wk is determined from the dis­
persion equation Re E (wk) = 0. Thus, allowance 
for finite albeit very small diffusion collisions 
eliminates the arbitrariness and the propag-ation 
velocities of the nonlinear periodic waves. 

The author is grateful toR. Z. Sagdeev for use­
ful discussions. 
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