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We show how the nucleon-nucleon scattering matrix can be reconstructed from the e:Xperimen
tal data at fixed values of the angle and energy in the relativistic case. Different reconstruction 
procedures are considered. Relativistic formulae are obtained for reconstructing the nucleon
nucleon scattering matrix in a state with total zero isospin from the np and pp scattering data. 

PROGRESS in the creation of polarized beams of the nucleon-nucleon scattering matrix is charac-
nucleons and polarized proton targets makes the terized in the general case by five scalar ampli-
problem of extracting maximum information on tudes, it is necessary to measure for their deter-
nucleon-nucleon scattering-the reconstruction of mination at least nine quantities. Since the ob-
the scattering amplitude-more amenable to solu- served quantities are expressed in terms of sca-
tion. In the particle-energy region below the pion lar amplitudes bilinearly, additional measure-
production threshold, such a reconstruction was re- ments must be used for their unique determination. 
alized by the method of the so-called "modified" The first to call attention to the possibility of 
phase-shiftanalysis, the reconstruction being fur- direct reconstruction were Puzikov, Ryndin, and 
thermore unique for a number of energy values. Smorodinskil, [ 31 Smorodinskil, [ 41 and Schumacher 

The phase-shift analysis method is effective in and Bethe. [ 51 Schumacher and Bethe have shown 
the region of not very large energies, when the how, to determine uniquely all five amplitudes of 
number of phases to be determined is small and the scattering matrix (accurate to a common 
the inelastic processes do not play an essential phase) by measuring, at a given scattering angle 
role. With increasing energy, the number of and energy, the differential cross section, the de-
phases to be determined from experiment in- polarization, the depolarization-tensor components, 
creases. In addition, at colliding-particle energies the polarization transfer, and the polarization 

# 

much higher than the pion production threshold, the correlations (a total of 11 quantities). Simplifica-
scattering phase shifts and the mixing parameters tions of this procedure, in measurements of the 
become complex. Detailed information on the pion polarization tensors of third and fourth orders, 
production mechanism is essential for a reliable were recently considered by the authors[ 61 and by 
phase shift analysis in this energy region. Winternitz, Lehar, and Janout. [ 7J 

The general method for reconstructing the scat- In this paper we show how to reconstruct the 
tering matrix, free from additional hypotheses of nucleon-nucleon scattering matrix in the relati-
the phase shift analysis, consists of determining vistic case. Direct relativistic relations are ob-
the scalar functions that characterize the scatter- tained between the measured quantities and the 
ing matrix directly from the experimental data on components of the polarization tensors in the 
elastic scattering at fixed values of the energy and c.m. s. The formulas needed for a unique recon-
scattering angle. This method makes it possible to struction of the nucleon-nucleon scattering matrix 
reconstruct the scattering matrix accurate to a from measurements of the components of polariza-
common phase shift. Within the region below tion tensors of rank not higher than second are 
threshold of pion production, the common phase is given. Different variants of the reconstruction 
determined by the unitarity relation. procedure are considered. We consider the scat-

The method of direct reconstruction is appar- tering of neutrons by protons. Formulas are ob-
ently used to best advantage at energies greatly tained for the reconstruction of the scattering 
exceeding the pion production threshold. 0 Since matrix of nucleons by nucleons in a state with 

1 )The reconstruction of the moduli of the scalar ampli
tudes was carried out for 640-MeV protons in [1, 2]. The rel
ative phases of the complex amplitudes were determined am
biguously, since the required number of experiments was not 
perfonned. 

total isotopic spin equal to zero. It is assumed 
here that the scattering matrix in the state with 
total isospin equal to unity is reconstructed from 
data on the proton-proton scattering. In the non
relativistic case the question of reconstruction of 
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the nucleon-nucleon scattering matrix from data 
on np and pp scattering at fixed values of the 
angle and energy were first considered by Golovin, 
Dzhelepov, Nadezhdin, and Saratov( 8 J and by 
Kazarinov. [ 9l 

1. SCATTERING MATRIX 

The nucleon-nucleon scattering matrix M(p', p) 
(p and p' are the c.m.s. momenta of the incident 
and scattered particles), satisfying the require
ments of invariance against rotations, space re
flections, and time reversal has, as is well 
known, [ 10 l the following general form: 

M(p', p) = (u + v) + (u- v) (a1n) (azn) 

+ c[(a1n) + (a2n)] + (g-h)(atm)(azm) 

+ (g+h)(atl)(azl). (1) 

Here u, v, c, g, and h are complex functions of 
the energy and of the scattering angle e in the 
c.m. s., and the vectors 1, m, and n are defined 
as follows: 

p' + p 
I-~~---, 
-IP'+pl' 

p'-p 
m- --~--

- lp'- PI, 
[pp'] 

n = [lm] = ~--. 
I [pp'JI 

(2)* 
From the Pauli principle, the matrix for proton
proton scattering satisfies the conditions 

M(p', p) = -P(1, 2)Jf(-p', p) = -M(p', -p)P(1, 2). 
1 (3) 

where P(1, 2) = / 2 ( 1 + u1 • u 2) is the operator of 
spin-variable permutation. It follows from (3) that 
in the case of pp scattering the scalar amplitudes 
have the following symmetry properties: 

The matrices Mi ( p', p) have the general form 
(1). From (6) we obtain the following symmetry 
conditions: 

u;(n:- 8) = (-1)iu;(O), h;(n:- 8) = (-1)i+ 1h;(8), 

c;(n:- 0) = (-1)i+1c;(O), v;(n:- 8) = (-1ht;(8). 
(7) 

2. MEASURABLE QUANTITIES 

We determine here the quantities that are 
me .surable in the relativistic case and obtain the 
connection between these quantities and the com
ponents of the polarization tensors in the c.m. s. 
All the relations obtained in this section are valid 
for both pp and np scattering. 

The spin density matrix of the final state in 
the c.m.s., as is well known, is 

p = M(p', p)poM+(p',p). 

Here Po is the initial density matrix: 

(8) 

po= 1/z(1+a1Pi) 1/z(l+azPz) (9) 

(P1 and P 2 are the polarization vectors of the in
cident nucleons and target nucleons, respectively). 
We shall assume that the density matrix (8) is nor
malized such that 

Sp p =a, (10) 

where u is the differential cross section of the 
scattering in the c.m. s. 

We denote by a z and b [' arbitrary unit vectors 
in the 1. s. The projection of the polarization vec
tor of the scattered particles (particle with a mo
mentum p') on the direction a'z , measured in the 
1 . [11-14] 
.S., IS 

<at> 1a 1' = a-1 Sp a1(a/)RP· (11) n(n:-8) =--u(8), h(n:-8) =h(O), 

c(n:- 0) = c(8), v(n:- 8) = -g(8). 

By virtue of the isotopic invariance, the 
neutron-proton scattering matrix is 

(4) Here (a'z )R = Rn(rl')a'z, and Rn(s-2') is the operator 
of rotation about the normal n through an angle 
st' = e - 2 8z ( ez is the scattering angle in the 
l.s.). Similarly, the projection of polarization of 

Mnp(p', p) = 1/z/1!1 (p', p) + 1/zMo(p', p), (5) the recoil particles on the direction b'f, measured 
in the 1. s., is 

where M 1 (p', p) and M0 (p', p) are the scattering 
matrices in states with total isospin I = 1 and 
I = 0, respectively, and p and p' are the momenta 
of the initial and final neutron in the c. m. s. From 
the generalized Pauli principle it follows that 
(i = 1, 0) 

M;(p', p) = (-1)iP(1, 2)M;(-p', p) 

= (-1)iM;(p', -p)P(1, 2). (6) 

*[pp') oc p X p' • 

<az> l bz" = a-1 Sp az(b t") RP, (12) 

where (b'f)R = Rn(rl")b'z, Rn(s-2") is the operator 
of rotation about the normal n through an angle 
st" = 2cpz - cp (cpz is the recoil angle in the l.s., 
and cp = n - e is the recoil angle in the c.m.s.). 
We note also that the experimentally measured 
(a], b'z)-component of the polarization correlation 
is equal to 

(13) 
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We introduce in the l.s. the following three 
orthonormal vector systems: 

n 1, kt. sz=[nzkd; (14) 

nb k 1', sz' = [nzkz']; (15) 

nt, kz", sz" = fntk.z"]. (16) 

Here kz, kf, and k"z are unit vectors in the di
rections of the momenta of the incident nucleon, 
scattered nucleon, and recoil nucleon, respec
tively, and nz = [kz x k[J/Ilkz x k'zll is a normal 
to the scattering plane (n z = n). The experimen
tally measured polarization vector of the scattered 
particle (recoil particle) will be characterized by 
the components in the system (15) (the system 
(16)). The polarization of the incident nucleons 
and the polarization of the target nucleons will be 
characterized by components in the system (14). 
The polarization tensors of first and second rank 
are defined as follows:[ 3• 151 

These quantities are connected by the well known 
relations 

P; =A; =Pn;, 

In the foregoing expressions o-0 = 1/ 4 Sp MM+ as 
the differential cross section for the scattering of 
polarized particles, Pi and Ai are the polariza
tion and asymmetry vectors, Dik and Kik are the 
depolarization and polarization-transfer tensors, 
and Cik and Aik are the polarization-correlation 
and asymmetry tensors. 

We proceed now to determine the experimentally 
measurable parameters. Using invariance consid
erations, we obtain the following expression for 
the differential cross section for the scattering of 
a polarized beam by a polarized target 

O"p,p, = <ro[1 + P(P1n l + Pzn 1 ) +Ann (P1nz) (P2n z) 

+ A •• (P!st) (Pzsz) + A""(P1k z) (P2kt) 

+Ask((P!st)(Pzkt) + (P1kz)(P2s!))]. 

(23) 

The quantities Ann• Ass• etc. can be measured 
directly in experiment. To determine Ass• for ex
ample, it is necessary to measure the cross sec
tion for the scattering of a beam with polarization 
P 1 = P 1 s z by a target polarized in the direction 
s z (P2 = P 2s z ). It is easy to relate these quantities 
to the components of the tensor cik in the c.m.s. 
Recognizing that 

nz = n, kz = k, S! = S, (24) 

where k = p/lp I is a unit vector in the direction 
of the c.m.s. momentum of the incident nucleon 
and s = n x k, we obtain 

Ass= C+- Czmsin e- C_cos e, 
A"" = C+ + Czm sin e + c_ cos B, 
Ask = -Czm cos e + c_ sin e, (25) 

where 

It is obvious that the component Cnn is measured 
directly in the experiment, with 

Ann= Cnn· 

The remaining components are 

C+ = 1/z(A •• + Akk), 

Ctm = -Ask cos e + 1/2 (Akk -Ass) sin 6, 

(26) 

C_ =Ask sin 6 + 1/z(Akk- Ass) cos 6. (27) 

The components of the tensor Cik can be de
termined also by measuring the nucleon-polariza
tion correlation when unpolarized particles are 
scattered. In experiment one measures the com
ponents Cnn and the following quantities: 

Ck's" = (k{)Ricik(Sz,)Rk, Ck'k" = (kz')RiCil,(kz")Rk• 

(28) 
Let a be an arbitrary vector. It is then obvious 
that 

R0 (Q)a = {an)n{1- cos Q) +a cos Q + [na] sin Q. (29) 

With the aid of (29) and (24) we easily obtain 

(kz')R = Ro(Q')kz' =I cos a+ m sin a, 

(sz')R = Ro(Q')sz' =-I sin a+ m cos a, 
a = e I 2 - e z. (30) 

Similarly we obtain 

{k.z")R = Rn (Q")kz" = -1 sin a'- m cos a', 

(sz")R = Rn (Q")st'' =I cos a'- m sin a', 

a'=rp/2-'fPl· (31) 
We note that in the nonrelativistic limit (0! = a' 
= 0) 

(kz')R =I, {s t')R = m, (kz"}R = -m,(sz")R =I. 
(32) 
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Using (30), we obtain the following expressions for 
the experimentally measured quantities (28): 

Cs's" = -C+ sin (a+ a') 

+ Czm cos (a - a') - C- sin (a - a') , 

Cs'k" = -C+ cos (a+ a') 

+ C1m sin (a- a') + C_ cos (a- a'), 

ck's" = c+ cos (a+ a') 

+ Czm sin (a- a')+ C_cos (a- a'), 

C"'"" = -C+sin (a+ a') 

- Czm cos (a - a') + C_ sin (a - a'). (33) 

It is obvious that the observed quantities (28) are 
connected by the following relation: 

(c, .• , + C"'"") I (Cs'h"- Ch's") = tg (a+ a'). (34)* 

We express C+, C_, and Czm in terms of the ob
servable Cs's"• Cs'k"• and Ck's"· From (33) we 
get 

C+ = (Ck's"- Cs'k") l2cos (a+ a'), 

C_ = 1h(Cs•k" + Ck's") cos (a- a') 

- [Cs•s" + 1lztg (a+ a') (Ch's"- c .. k")]sin(a.- a'), 

Czm = 1lz(Cs'k" + Ck's")sin(a- a') 

+ [Cfs" + 1lztg(a +a') (Ch's"- Cs'k") ]cos(a- a'). 

(35) 

We now proceed to consider the polarization oc
curring when one of the initial particles is polar
ized. Let the polarization of the incident nucleon 
beam P1 differ from zero, and let P 2 = 0. From 
invariance considerations it is obvious that the 
components of the polarization of the scattered 
particle, measured in the 1. s., are 

Here 

Gp,<a1)!D! = ao(P + Dnn(PtD ) ), 

(1p,<at>tkt' = ao(Dk•k(Ptkt) +Dk•s(Ptsr)), 

Gp,<at>rsr' = ao(Ds'h(Ptkt) +Ds•s(Ptsr}). (36) 

Dnn = D = (nt);D;k(nr)k, Ds's = R = (sr')RiDih(sr)k, 

Ds'h =A= (st')RiDih(kt}k, D"'• = R' = (kt'}IuD;~<(s! )k, 

Dk'h =A'= (kt')R;D;h(kt}k (37) 

are the known Wolfenstein triple-scattering param
eters, determined with allowance for relativistic 
rotation, r 11 • 14 J and ap1 is the differential eross 
section for the scattering of a polarized beam by 
an unpolarized target. From (23) we get 

*tg = tan. 

Let us express the measurable quantities (37) 
in terms of the component of the tensor Dik in the 
c.m.s. With the aid of (30) we get 

Ds•s = D+ cos (a + ~)- Dzm sin (a + ~) 

- D_ cos (a - ~) , 
Ds'h = -D+sin (a+;) -Dzmcos( a+~) 

-D_sin( a-~), 

Dk's = D-t sin (a + ~ l + Dzm cos ( a + ~2 ) \ 2/ \ 

- D_ sin (a - ~) , 

Dh·h=D+cos( a+;)-Dzmsin( a+~) 
+D-.cos( a-~), (39) 

where 

It is easy to show that the four measurable quan
tities (36) are related as follows: [ 14 J 

Let us express D+, D _, and Dzm in terms of the 
measurable parameters Ds's• Ds'k• and Dk's· 
From (39) we obtain 

D_ = - 1lz(Ds'h + D~<•s) I sin( a- e I 2), 

/)+ = - 1lz(Ds'k- Dk•s)sin(a + e I 2) 

+ [Ds's- 1/z(Ds'k + Dk•s)ctg(a- e I 2) ]cos (a+ e I 2), 

Dzm = - 1lz(Ds'k- Dh•s)cos(a + 6 I 2) 

- [Ds's - 1lz (Ds'k + Dk•s) ctg (a - e I 2)] 

X sin (a + e I 2). (41) 

It is obvious from (19) that the components of 
the depolarization tensor Dik can be determined 
also by measuring the polarization of the second 
particle (recoil particle), produced upon scatter
ing of an unpolarized beam by a polarized target 
(P1 = 0, P 2 f- 0). Using considerations of invari
ance against rotations and reflections, we obtain 

Here 

Gp,(az>tn! = ao(P + Dnn(Pzn.!)), 

Gp,<az) tkt 11 = ao(Dk"k(Pzkt) + Dh"s(Pzs 1) ), 

Gp,<az) [S! 11 = ao(Ds"k (Pzk!) + Ds"s (Pzs l)). 

Dk"s = (kr")R;D;k(s!)k, 

(42) 

Ds"s = (s•'')R;D;k(st}k. (43) 
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From (19) and (31) we obtain the following expres
sions for these quantities 

Ds"s = -D+sin (a'- 812) +DzmCOS (a'- 812) 

+ D_ sin (a'+ 8 I 2) ,. 

Ds"h = D+ cos (a'- 8 I 2) + Dzm sin (a' - 8 I 2) 

+D-cos (a'+ 812), 

Dh"s = -D+ cos (a'- 8 I 2) - Dzm sin (a'- 8 I 2) 

+D-cos (a'+812), 

Dh"h = -D+ sin (a'- 8 I 2) + Dzm cos (a'- 8 I 2) 

- D_ sin (a' + 8 I 2) .. 

The quantities (43) are related by 

(44) 

(Ds"h + Dh"s) I (Ds"s - Dh"h) = tg cp z. ( 45) 

We note that in the nonrelativistic limit the 
measurable quantities (37) and (43) are connected 
by 

Ds's = Dms = -Dh"s, Ds'k = Dmh = -Dk"k, 

(46) 

The components of the depolarization tensor in 
the c.m.s. are expressed in terms of the meas
urable quantities (43) as follows: 

D_ = (Ds"h + Dk,s) I 2 cos (a'+ 8 I 2), 

D+ = 1lz(Ds"h- Dk"s) cos (a'- 8 I 2) 

- [Ds"s- 1/z(Ds"h + Dk"s) tg (a'+ e I 2)] 

X sin (a'-812), 

Dzm = 1/z (Ds"h - Dk"s) sin (a'- 8 I 2) 

+ [Ds"s- 'lz(Ds"k + Dk"s) tg (a'+ e I 2)] 

Xcos (a'-8/2). (47) 

As is well known, measurement of the nucleon 
polarization in the energy interval from 20 to 
100 MeV is made difficult by the lack of analyzers 
with sufficient analyzing ability. This means that 
when experiments with polarized beams are set 
up, the components of the tensor Dik cannot be de
termined in the entire angle interval. It is obvious 
that this difficulty does not arise if we determine 
the depolarization tensor Bik in the c. m. s. by 
means of experiments with both a polarized beam 
and a polarized target. In addition, as seen from 
(41), to determine any of the components of the 
tensor Dik (except Dnn) in polarized-beam exper
iments it is necessary to carry out difficult meas
urements of the longitudinal polarization of the 
scattered particle (the parameter Dk's). The use 
of a polarized target would replace these experi
ments by simpler ones, in which the transverse 

polarization of the recoil particle would be meas
ured. From (39) and (45) it is obvious that the 
components D zz, Dmm• and Dzm can be deter
mined by measuring, for example, Ds's• Ds'k• 
and Ds"s· We obtain 

D+ = -11-'HDs's sin 8 + Ds'k cos 8) cos (a+ a') 

+ Ds's sin (a'- a) + Ds"s cos 2a], 

D1m = 11-1 [( -Ds's cos 8 + Ds'k sin 8) cos (a+ a') 

+ Ds's cos (a'- a) + D8 , 8 sin 2a], (48) 

D_ = -11-1[Ds's sin {a+ a') + Ds'k cos (a+ a') + Ds"s], 

where 

11 = 2 cosr(a +a') sin (a- 8 I 2). 

We proceed to consider the polarization-trans
fer tensor Kik' Let a polarized beam be scattered 
by an unpolarized target (P1 1- 0, P2 = 0). For the 
experimentally-measured polarization components 
of the recoil particles we obtain the following ex
pressions: 

ap, (uz) znz = ao(P + Knn(P,nz) ), 

ap, (az> t kz" = ao (Kh"k (P,k !) + Kk"s (P,s z)), 

up, (az) l s z" = ao (Ks"h (P,k l) + Ks"s (P1s z)). ( 49) 

Here 

Ka"b = (az") RiKik (b l )k; 

a z and bz are the vectors made up of the triads 
(16) and (14) respectively. It is obvious that the 
relations between these quantities and the compo
nents of the tensor Kik• and also the inverse re
lations, can be obtained from (44) and (47) with the 
aid of the substitution 

The components of the polarization-transfer 
tensor Kik can be determined also by measuring 
the polarization of the scattered particle during 
the scattering of an unpolarized beam by a polar
ized target (P1 = 0, P 2 1- 0). From invariance con
siderations we obtain 

ap, (u,)znz = ao(P + Knn(Pznz)), 

ap, (a,)zkz' = ao(Kk'k (Pzk.z) + Kk's(Pzsd), 

ap, (a,) !S ! 1 = ao (Ks'k (Pzk z) + Ks's (Pzs 1)), (50) 

where 

Ka'b = (az')R;K;k(bz)k. 

Making the substitutions Dik- Kik and Da' b 
- Ka'b in (39), we obtain relations between these 
quantities and K+, K_, and Kzm· By means of the 
same substitution we obtain from (41) the inverse 
relations. 
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In conclusion we present expressions for the 
differential cross section u0 of the polarization P 
and the components of the tensors Dik· Kik· and 
Cik• calculated with the aid of the scattering ma
trix (1): 

Uo=2(lul 2 + lvl 2 + lcl 2 + lgl 2 + lhl 2), (51) 

croP= 4 Re cu*, (52) 

croDnn=2(iul 2 + lvl 2 + lcl 2 -lgl 2 -lhl 2), (53) 

croD+ = 4 Re uv*, 

croD- = 4 Re gh•, 

croDzm = 4 Im cv*, 

croK+ = 4 Re ug*, 

croK- = 4 Re vh*, 

croKzm = 4 Im cg*, 

croC+ = 4 Re vg*, 

croC- = 4 Re uh*, 

croCzm = -4 Im ch •. 

(54) 

(55) 

(56) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

3. DIRECT RECONSTRUCTION OF THE 
NUCLEON-NUCLEON SCATTERING MATRIX 

With the aid of the formulas obtained in the 
preceding sections we can determine in the rela
tivistic case, from the experimentally measured 
quantities, the components of the polarization ten
sors in the c.m.s. We can then use relations (51)
(64) to express the amplitudes u, v, c, g, and h in 
terms of the cross section u0 , the polarization P, 
and the components of the polarization tensors 
Dik· Kik• and Cik· As already noted above, the 
direct reconstruction of the nucleon-nucleon scat
tering matrix from the experimental data at a fixed 
angle and energy were considered by Schumacher 
and Bethe. [ 5 J We generalize here the method pro
posed by them. 

As seen from relations (51), (53), (57), and (61), 
the differential cross section u0 and the normal 
components Dnn• Knn• and Cnn are expressed in 
terms of the squares of the moduli of the ampli
tudes u, v, c, g, and h. From this we get 

lgl 2 = 1/scro(1 + Knn- Dnn- Cnn), 

lhl 2 = 1/scro(1- Knn- Dnn + Cnn), 

lt•l 2 = 1/scro(i- Knn + Dnn- Cnn), 

lul 2 + lcl 2 = 1/scro(1 + Knn + Dnn + Cnn). (65) 

It is obvious that the scattering matrix can be 
reconstructed from (51)-(64) only accurate to a 
common phase factor. This means that one of the 
amplitudes can always be regarded, during the re
construction of the scattering matrix, as real and 
positive. We shall assume that the amplitude c is 
real and positive (this means that we are recon
structing the matrix exp (- i<P c)M ( p', p), where 
<Pc is the phase of the amplitude c). We then ob
tain from (52), (64), (56), and (60) 

1 
He u =-croP, 

4c 

1 

1 
Im h = - croCz,, 

4c 

Im l! = - · -- croDzm, 
4c 

1 
Im g = - 4c croKzm. (66) 

We now determine the amplitude c. To this end 
we use the relation 

l,x 12 1 Y 12 - (Re xy*)2 = lx I2 (Im y)2 + I y I2 (Im x) 2 

- 2 Re xy* Im x Im y,. (67) 

which is valid for any two complex numbers x and 
y. Choosing for x and y the amplitudes g and h, 
we obtain with the aid of (66) the following expres
sion for c2: 

Here 

lgi 2M2 -lhi 2 N2- 2 Re gh* MN 
lglzl hlz- (Re gh*)Zt---. 

(68) 

and I g 12, I h 12, and Re gh* are given respectively 
by the expressions (65) and (55). 

For a complete reconstruction of the scattering 
matrix it is necessary to determine only the signs 
of Im u, Re H, Rev, and Re g. The relative sign 
of Re g and Re h can be determined from 

Re gh* = 1/ 4croD- = He g Re h + Im g Im h. (69) 

With the aid of (54) we can determine the signs of 
lm u and Re v. Any of the remaining unused equa
tions makes it possible to eliminate the remaining 
unambiguity. Other variants are also possible, 
namely, we determine with the aid of (58) or (63) 
the signs of Im u and Re g (or Im u and Re h), 
after which the sign of Re v can be determined 
with the aid of (54) or else (59), or else (62). Thus, 
for a unique reconstruction of the nucleon-nucleon 
scattering matrix it is necessary to know with 
sufficient accuracy 11 quantities in the c.m.s. 

It is obvious that the accuracy with which the 
scattering matrix is reconstructed by our method 
depends on the accuracy with which the amplitude 
c is determined. In this connection, let us obtain 
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other expressions for c2• Choosing for x and y in Here 
(67) the amplitudes g and v, we obtain 

2 _ lgi 2 L2 +Ivi 2 N2 -Regv*LN 
c ----· 

lgl 2 lvi 2 -(Regv*) 2 ' 

(70) 

where L = - 1/ 4 cr0Dzm· We obtain similarly 

c'- = ihi 2 L2 + lvi 2 M2 - 2Re_~~· LM (7l) 
lhl 2 1 vl 2 - (Re hv*) 2 . 

in the case when x and y in (67) are chosen to 
be h and v. 

Finally, we can make the amplitude u real and 
positive, and reconstruct from the experimental 
data the matrix [exp (-icpu)lM(p', p) (cpu is the 
phase of the amplitude u). From (52), (54), (58), 
(63),we then obtain 

R 1 . 
ec = --aoP, 

4n 

1 
Re g = - aoiC,_, 

4u 
1 

Re h = - aoC.-. 
4n 

To determine u we use the relation 

- 2 Rex Re y Re xy*, 

(72) 

(73) 

where x and y are arbitrary complex numbers. 
With the aid of (72) and (73) we obtain the following 
expression for u2: 

nz = _k~_Jl;fl2 +ihi 2 NI2 -2R~gh~ M11V1 (74) 
lgl 2 lhi 2 -(Regh*) 2 

where 

For a unique reconstruction of the scattering 
matrix it remains to determine the signs of Im c, 
Im v, Im g, and Im h. The relative signs of 1m g 
and Im h are obtained from (55). The signs of 
Im c and Im v can be determined from (56). The 
remaining uncertainty can be eliminated with the 
aid of any of the relations unused so far. (Other 
variants are: use (66) to determine the signs of 
Im c and 1m g, or else (64) to determine the signs 
of Im c and Im h, after which use (56), or (59), 
or (62) to determine the sign of Im v.) 

In conclusion we present other expressions for 
u2, obtained with the aid of (72) and (73): 

I vj 2M12 + lhi 2L12 - 2 Re uh"M1L1 

I vl 2 lhl 2 - (Re vh*)2 

lvi2N12 + !gj 2D12 -Bevg*N1L1 

I vl 2 lgl 2 - (Re vg*) 2 

(75) 

(76) 

L1 = 1/.aoiJ+. 

It is clear that different variants of the reconstruc
tion of the scattering matrix should be used in dif
ferent energy and angle regions. 

4. SCATTERING OF PROTONS BY PROTONS 

In the case of proton-proton scattering, the am
plitudes u, v, c, g, and h satisfy the symmetry 
conditions (4). The pp-scattering matrix is speci
fied, consequently, by the amplitudes u, v, etc. in 
the interval 0 :5 e :5 1f /2. It is obvious that the 
identity of the particles leads also to symmetry of 
the observable quantities. Using the conditions (3), 
we find that the polarization tensors in the c.m.s. 
satisfy in the case of pp scattering the following 
relations: 

Pi(p',p) =P;(-p',p), Di1,(p',p) =Kii,(-p',p), 

cil,(p', p) = C;~t(-p', p). 

For the experimentally measured quantities in 
Sec. 2 we obtain 

P(e) = -P(Jt- e), 

Ann (e) =Ann (Jt- e), 

Ass(e) =As,(Jt-e), 

Ash (e) = -As" (Jt- e), 

C.•sn (e) = Cs's" (Jt- e), 

Dnn (e) = Knn (n- 8) ,. 

n •.• (8) =K .... (n-8), 

Ds.,,(O) = -Ks"k(n- 8), 

D~t•s (8) = -1\~t"s (n- e), 

Ds"s(8) =Ks•s(n-8), 

(77) 

cs.,. .. (8) = -C,.·s·•(n- 8), 

ck's"(8) = -Cs'k"(Jt- 8), 

Ds .. k(8) = -Ks.,.(n- 8), 

D,,,s(fl) = -En•s(Jt- e). 

(78) 

In connection with these relations, we make the 
following remark. If the incident photon beam is 
polarized, then the polarization of particles with 
c.m.s. momentum p differs in the general case 
from the polarization of particles with momentum 
-p. It is obvious that the measurement of the po
larization of protons emitted in the c.m.s. at an 
angle e (0 :s e :s 1r /2) makes it possible to deter
mine Da'b(B), while measurement of the polariza
tion of protons emitted in the c.m. s. at an angle 
1r - e makes it possible to determine Ka"b· In 
the case of an unpolarized beam and a polarized 
target, measurement of the polarization of the pro
tons emitted at an angle e in the c.m.s. (0 :5 e 
:s 1f /2) makes it possible to determine Ka'b(B), 
while measurement of the polarization of protons 
emitted at an angle 1f - e makes it possible to de
termine Da"b· The particles emitted at c.m.s. 
angles e and 1f - e have different energies in the 



600 BILENKII, LAPIDUS, and RYNDIN 

l.s. The analyzing ability of the analyzer-targets 
depends on the energy of the particles incident on 
the target. This means that the determination of 
the components of the depolarization and polariza
tion-transfer tensors can be greatly simplified if 
experiments are made not only with a polarized 
beam but also with a polarized target. 

5. SCATTERING OF NEUTRONS BY PROTONS 

By virtue of isotopic invariance, the neutron
proton scattering matrix is equal to half the sum 
of the scattering matrix in the states with total 
isotopic spin I equal to unity and zero (see (5)). 
While experiments on the scattering of protons by 
protons reconstruct the nuclear scattering matrix 
in the state with I = 1, M1(p', p), experiments on 
np scattering must be used to reconstruct the ma
trix M0(p', p). This matrix, owing to the symme
try conditions (7), is specified by the amplitudes 
uo, vo, c0, go, and ho in the interval 0::::: ()::::: 1r /2. 

Let us consider observable quantities. The dif
ferential cross section for the scattering of unpo
larized neutrons by unpolarized protons is 

O'np(fl) = 1/40'I=!(e) + 1/40'I=o(e) 

+ 1/sRe Sp .Mi(p', p).M0+(p', p). 

Here 

ar=de) = 1/4Sp illl{p', p)Mt+(p', p), 

(79) 

O'r=o(e) = 1/4Sp ilfo(p', p)ilfo+(p', p) (80) 

are the differential cross sections for the scatter
ing of unpolarized nucleons in states with I = 1 
and I = 0 respectively ( () is the angle between the 
initial and final momenta of the neutron in the 
c.m.s.). From (6) we find that 

O'r=t{6) = O'I=l(n:- e), O'r=o(e) = O'r=o(n- e), 

Sp.Mt(P', p).Mo+(p', p) = -Spillt(-p',p).Mo+(--p', p). 
(81) 

Let us consider the cross section for np scat
tering through angles () and 1r - e. With the aid of 
(79) and (81) we obtain 

2[anp(e) + O'np(n:- e)]= ar=i(e) + ar=o(e), 

O'np(e) -O'np(n:-e) =aint(e) 

= 1hRe Sp Mt (p', p).Mo+(p', p). (82) 

Thus, measurement of the differential cross sec
tion for the scattering of unpolarized neutrons by 
unpolarized protons at angles () and 1r - () allows 
us to determine (if a pp( 0) is known) the scatter
ing cross section ai=O (0) in the state with zero 
isotopic spin, and the interference term Re Tr M1 

x (p', p)M;(p', p), in which the scattering ampli
tude in the state with I = 0, which is of interest to 
us, enters linearly. 

It is obvious that in the region where Coulomb 
interaction can be neglected we have 

ar=l (e) = app (e). (83) 

Using (5) and (6) we obtain for the state with I = 0 
the following expressions for the polarization and 
the second-rank polarization tensors:2> 

2( O'np (e)Pnp (e) - D'np (n:- e)Pnp (n:- e)] 

- O'I=l (6)PI=1 (6) = O'J=o(6)PI=D(6), 

2 [O'np (6)Diknp (p', P) + O'np (n:- 6)Kiknp ( -p', P)] 

- O'r=t(6)D;k1= 1 (p', p) = O'I=o(6)D;k1= 0 (p', p), 

2 [O'np (6)Kiknp (p', p) + O'np (n:- 6)Diknp ( -p', p)] 

- ar=t(8)K;k1=1(p',p) = a1=o(6)Ku1=D(p' p). (84) 

Similarly we find that the interference terms are 
equal to 

O'np (6)Pnp (6) + O'np (n:- 6)Pnp (n:- 6) = (aP) int 

= 1/4Re Sp (a!n).Mt(P', p).Mo+(p', p), 

Onp(6)D;knp(p', p)- O'np(n:- 6)KiknP(-p', p) 

= (aD;k) int = 1/4Sp Re au.Mt (p', p) O'!k.Mo+(p', p), 

O'np(8)Kiknp(p', p) - O'np(n:- '-l)D;knP(-p', p) 

= (aK;k) int = V4 Re Sp auMI(p', p) O'tkMo+(p', p), 

O'np(8)CiknP(p', p)- O'np(n:- 6)CiknP(-p', p) 

= (aC;k) int = 1/, Re Sp O"!i0'2kll11'(p', p) M0+ (p', p). 

(85) 

It is obvious that the cross section, polariza
tion, and components of the tensors Dik• Kik• and 
Cik in the state I = 0 are given by expressions 
(51)-(64) (in which u should be replaced by u0, 

v by v0, etc.). With the aid of (85) we obtain for 
the interference terms the expressions 

1/,. Re Sp MtMo+ 

= 2Re (u1uo* + VtVo* + Ctco* + gtgo* + htho*), 

1/4 Re Sp (atn)MtMo+ = 2 Re (u1co• + u0*ct), 

1/4Re Sp au.MtO'tk.Mo+ = 2(Re (utuo• + VtVo· + Ctco• 

- gtgo• - htho*)n;n,. + Re(u1v0* + v1uo* + g1h0* 

+ htgo*)l;lk + Re(utvo* + Vtuo*- g1h0*- h1g0*)m;mk 

+ lm(ctvo*- v1co") (l;mk- m;l,.)], 

2)Relations (82)-(86) were first derived (in a different 
form) in [8]. 
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1/,. Re Sp awl11a11,Mo+ = 2[Re (u1uo'- v1vo* 

+ c1co* + g!go*- h1ho*)n;n" + Re(u1go' + g1uo* 

+ v1ho* + hlvo*)l;lk + Re(u1g0* + g1u0*- v1h0* 

- h1v0*) m;mk + Im (c1go•- g1co") (l;mh- m;l~t)], 

1/,. Re Sp a1ia2kM1Mo' = 2[Re (u1uo'- v1vo* + c1co*- glgo* 

+ h1h0*)n;nk + Re(u1ho* + h1uo· + v1go* + g!vo*)l;lk 

+ Re(-u1ho'- h1uo' + v1go• + g!vo*)m;mk 

(86) 

In conclusion we obtain formulas for the recon
struction of the nucleon-nucleon scattering matrix 
in the state with total isotopic spin equal to zero. 
The matrix M 1 ( p', p) is assumed known. If we 
measure at the angles () and 1r- () the differen
tial cross section for the scattering of unpolarized 
neutrons by unpolarized protons, the polarization 
produced by collision of the unpolarized particles, 
and the normal components of the tensors Dik· 
Kik· and Cik· then we obtain from (65) I v0 1 2, I g0 1 2, 

I ho 12, and I u0 12 + I <1> 12 (the corresponding quanti
ties for pp scattering at the angle e are assumed 
known; it is obvious that it is necessary to make 
in (65) the substitutions lv 12 ---.1 v0 12, I gl 2 ---.1 & 12, 

I=O I=o etc., Knn---. Knn, Dnn---. Dnn , etc.). 
It is convenient to introduce in lieu of the am

plitudes u0 and c0 

ao = uo + co, ~o = uo -co. (87) 

We then get from (67) and (54) 

I 12 1; Kr=o ni=o cl=O ao = sGJ=o(1 + nn + nn + nn + 4Pr=o), 

We proceed to consider the interference terms. 
From (86) and (87) we easily obtain 

Re VoV1• = 1/s(aint + (aDnn)int- (crKnn)int- (crCnn)int), 

Re hoh1* = 1/s(G,int- (aDnn) int- (aKnn) int + (aCnn) int), 

Re gog!• = 1/s( a int- (aDnn) int + (aKnn) int - (aCnn) int), 

Reaoa1* = 1/s(aint+ (aDnn)int + (aK,,)int + (crCnn)int 

+ 4 ( aP) int), 

Re ~0~1• = 1/s(a int + (crDnn)int + (aKnn) int 

+ {crCnn)int -4(aP)int). (89) 

Here 

Thus, measurement of the differential cross 
section, the polarizations, and the normal compo-

nents of the depolarization, polarization -transfer 
and polarization-correlation tensors at angles e 
and 1r - e makes it possible to determine at the 
angle () the moduli of all five amplitudes in the 
state with I = 0, and the cosines of the phase dif
ferences of the amplitudes v0 and vi> h0 and h1, 

g0 and gl> a 0 and al> and {30 and {3 1• 

In order to determine the signs of the corre
sponding phase differences, it is sufficient to find 
the signs of the imaginary parts Im v0v{, lm hohf, 
Im & gi, lm a0 a { , and Im {30{3 {. To this end, let 
us consider other observables. Assume that we 
have determined in the c.m. s. components of the 
polarization-correlation tensor in the state I = 0 
and the corresponding interference terms (by 
measuring the cross section for the scattering of 
the polarized beam by a polarized target). With 
the aid of (85) and (86) we get 

Gnp (B)C+np (8)- Gnp (:n:- 8)C+np (:n:- 8) 

= 2 Re (gov!* + vog!•) = --2- (Re g0g1* Re g"tv1* 
I g1l 2 

2 
- Imgog1• Img1v1*) + ~ 

It is obvious that the absolute values of lm g0g{ 
* and Im v0v1 are 

I Im gcgl*l = [igol 2 lgll 2 - (Re gogi*)2J'i', 

IImvovl*l = [lvol 2 lv!l 2 - (Revov!*) 2]'/, (91) 

and consequently are known. Thus, relation (90) 
takes the form 

where 

eg= 

Aeg + Bev = C, 

Im gog!* 

IImgogl*l' 

Im v0v1• 
Ev === ' I Im vov!*l 

(92) 

and A, B, and C are quantities defined by the re
lations (90), (89), and (65) and the pp-scattering 
amplitudes. From this we can obtain uniquely E g 
and Ev (exceptions are cases when one of the quan
tities A, B, or C vanishes). 

The signs of the imaginary parts Im g0g{ and 
Im v0v{ can also be obtained from the relation 

(93) 

Indeed, it is easy to show that (93) can be written 
in the form 

A'e8 + B'e, + Cegev = F', . (94) 

where A', B', C', and F' are known quantities. 
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With the aid of (94) we can determine uniquely E g 
and Ev (with the exception of cases when F' = C' 
and A'= -B', or else F' = -C' and A' = B'). 
Further, from the relation 

Unp(e)Ctm"P(8)- Unp(:rt- e)CtmnP(:rt- e) 

=21m (hoc!•- aoh1* + ~oh1") (95) 

we can determine in analogous fashion 

Im hoh1* Im aoa1• lm ~0~1 • 
Eh = I I h h *I ' Ea = -~ ---.-~ ' E~ = I I R *I m o 1 Im aoa1 m ~op1 

Indeed it is easy to see that expression (95) can 
be represented in the form 

(96) 

where A", B", C", and F" are known quantities. 
From this we obtain Eh, Ea and Ef3. 31 We note 
that Eh, E a• and E {3 can be obtained from the re
lations 

Unp(e)C-"P(e) + <1np(:rt- e)C-"P(Jt- e) 

= Re (2hout" + aoht" + ~oh1•), 
cr I=OC/m=O = 4 lm Co • ho. (97) 

It is obvious that E g. Ev, etc. can also be de
termined if we know the components of the other 
polarization tensors. 

Finally, Eg, Ev, Eh, Ea, and Ef3 can also be ob
tained with the aid of the quantities that are meas
urable directly in the experiment. For example, 
from 

<1np(8)A8s"P(e)- <inp(:rt- e)Ass"P(Jt- e) 

= 2(Re (v1go" + g1vo") + Im (crho"- h1c0*) sine 

- Re(u1ho" + h1uo") cos e] (98) 

we obtain a relation that contains linearly all five 
quantities whose signs we must determine. 

In conclusion we emphasize that owing to the 
interference of the amplitudes with I = 1 and I = 0 
in the expressions for the observable np scatter-

3 )If F" coincides in absolute magnitude with one of the co
efficients in the left side of (98), and the remaining two coef
ficients also coincide in absolute magnitude, then Eh, E a• and 
E f3 cannot be uniquely determined from (98). 

ing, all 10 amplitudes are reconstructed accurate 
to one common phase. 

The authors are grateful to B. M. Golovin, 
Yu. M. Kazarinov, and Ya. A. Smorodinskil for 
useful discussions and remarks. 
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