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Cerenkov absorption of Alfven and fast magnetic-sound waves in a plasma with a high gas­
kinetic pressure (47Tllo T /~ .G 1) is investigated in the quasilinear approximation. Cyclotron 
absorption of the fast magnetic-sound wave by the ions and of the ordinary and extraordinary 
waves by the electrons are investigated in the same approximation in a plasma with a low 
gas-kinetic pressure (47rno T /H 5 « 1) (n0 and T are respectively the plasma density and tem­
perature and H0 is the external magnetic field). It is shown that the different components of 
the Alfven waves as well as the fast magnetic-sound waves which propagate almost parallel to 
the external magnetic field have different damping rates. The difference in the damping rates 
is of the order of the reciprocal wave-diffusion time for the ions in velocity space. It is also 
shown that the formation of a plateau on the ion distribution function can lead to a strong in­
crease (compared with the linear theory) of the Cerenkov absorption of the Alfven waves. (In 
a plasma with a low gas-kinetic pressure the formation of a plateau always leads to a reduc­
tion of the damping rate). The damping rates for the cyclotron damping of the fast magnetic­
sound wave and of the ordinary and extraordinary waves can also increase with wave amplitude 
as a consequence of the plateau formation. 

1. INTRODUCTION 

CERENKOV and cyclotron absorption of the en­
ergy of different branches of the electromagnetic 
waves in a uniform magnetoactive plasma have 
been investigated in the quasilinear approximation 
in a paper by Rowlands and the present authors.[ 1J 

However, the expressions obtained in [ 1J for the 
damping rates of the Alfven and fast magnetic­
sound waves apply only for a low-pressure plasma, 
in which case the Cerenkov absorption of these 
waves by the ions is exponentially small. 

In the present work we determine the damping 
rate for the Alfven wave and also for the fast 
magnetic-sound wave propagating almost parallel 
to a magnetic field, this absorption being a conse­
quence of the Cerenkov absorption of these waves 
by the ions in a plasma with a high gas kinetic 
pressure for the case in which the Alfven velocity 
is smaller than or of the order of the ion thermal 
velocity. It is shown that the different components 
of the electric field in these waves have different 
nonlinear damping rates. The difference between 
the damping rates for the different components is 
of the order of the reciprocal time for wave diffu­
sion of the ions in velocity space. In contrast with 

the cases considered earlier, the formation of a 
plateau on the ion distribution function can lead to 
a strong enhancement (compared with the linear 
theory) of the damping as a consequence of the 
Cerenkov absorption of the Alfven waves. 

We also determine the damping rate for the fast 
magnetic-sound wave (under conditions of ion cy­
clotron resonance) and the ordinary and extraordi­
nary waves (under conditions of electron cyclotron 
resonance) in a plasma with a low gas kinetic pres­
sure. The formation of a plateau can also increase 
the damping rate for these waves. 

2. BASIC EQUATIONS 

The background distribution function for the 
resonance particles is found from the equation[ 1' 21 

fJja. e )2 "" 1 { -=:rc(___c:_ ~· ~ --R Vj_(Rta.)· 
at ma. k 11 =-oo v J._ 

(2.1) 
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where 

R = wk - k11v11 _!!_ + k11v .L _a_ 
(t)k OV j_ Wk rJv11 ' 

k.Lv.L ieaiHo ea 
a = ~, Wa = ----;;;:;;;;-, f) a = ~, 

a 
fM is the Maxwellian distribution function corre-
sponding to temperature T a for particles of spe­
cies a, Ei is the projection of the electric field 
along the axis ei (e 1 11 k1, e 2 == e3 x e 1, e 3 II H 0; k1 
is the component of the wave vector k perpendicu­
lar to the magnetic field H 0 and D~ a> is the col­
lisional diffusion coefficient for particles of spe­
cies a. An expression for D~a> is given in [ il_ 

In the general case, the fields Ei will exhibit 
strong spatial dispersion and, consequently, dif­
ferent damping rates y = - Im 'Yi where 

v;(t) =olnE;(t)lot, (2.2) 

which are determined from the following equa­
tions: [ 3l 

A,iEJ = 0, A;j = E;j + k2c2 ( k;kj I k2 - b;j) I W;Wj, 

Eij = {jij + 4:rticr;j(Wj)'/ W;, Wj = Wk + ivj(t), (2.3) 

where Wk is the frequency for a wave character­
ized by wave vector k and u ij (w) is the conduc­
tivity tensor for the plasma which is given by for­
mulas derived from the linear theory. 

We note that Eq. (2.1) can be used only when the 
following condition is satisfied (cf. [ 3l ): 

!lk~ v 
k k11i vn - owk/ oknl ' 

(2.4) 

where .0-k is the width of the wave packet and v11 
is the projection of the velocity of the resonance 
particles in the direction of the magnetic field. 
The condition in (2.4) is not satisfied for waves 
that exhibit a linear dispersion relation wk r::; kv 
(in particular the Alfven wave and the fast mag­
netic-sound wave that propagates almost parallel 
to the magnetic field ~ ). The equation for the 
background distribution function for these waves 
has a nonlocal time character. However, Eq. (2.1) 
can be used for these waves in the quasistationary 
state (8fa/8t r::; 0) for driven oscillations when the 
wave diffusion of the particles is balanced by col­
lisional diffusion. Eqs. (2. 2) and (2. 3) also apply 
for waves with linear dispersion. 

3. CERENKOV DAMPING OF MAGNETO­
HYDRODYNAMIC WAVES 

We consider the damping of low-frequency 
(w « Wi) long-wave (kvi « Wi) oscillations of a 

plasma which correspond to the magnetohydrody­
namic waves of ordinary magnetohydrodynamics. 
We consider magnetohydrodynamic waves in a 
plasma with a high ion pressure Ki == 47rn 0 T/H~ 
,G 1. The damping of these waves in a plasma with 
a low pressure (Ki « 1) has been treated in the 
quasilinear approximation in [ ll.) The dispersion 
equation for these waves is of the following form 
(nj == kc/wk + i'Yj ): 

( Eu - n12 cos2 'It) [ E22 --- nz2 - E3zE23 I ( £33 -- ni sin2 0)] 

= -EtzEzt- { E3zEzt ( Et3 + n1n3 sin 0 cos il) 

+ ( £31 + n1n3 sin 0 cos 0) [ Etzez3 - ( ezz - nz2) 

X (et3 + n 1n3 sin 0 cos 0)]} (e33 - n32 sin2 0)- 1• (:1.1) 

It is known from a linear theory that the right 
side of Eq. (3.1) is small so that in the zeroth ap­
proximation this equation splits into two equations: 

(3.2) 

(3.3) 

The first of these equations determines the fre­
quency of the Alfven wave w == k11v A while the 
second determines the frequency of the fast and 
slow magnetic-sound waves. When Ki ,2: 1 the 
magnetic-sound waves are highly damped if the 
angle J is not close to zero ( y ~ w). Hence, below 
in the case J ~ 1 we shall only consider the damp­
ing of the Alfven wave. 

For the Alfven wave we can write 'Yi == 0 in the 
expressions for the tensor E:ij in Eq. (3.1). Under 
these conditions the tensor E:ij can be written 

Q;Z cz 
Eu = n<tz = ---

• W;2 VA2 

Etz = inA2 ~-[ 1 +X; (1- ~ tg2 o)] = inA2~ q, 
Wi , 2 W; 

633 = 

where 
zi 

w;2n"t 2/o 
w2x; ' 

(3.4)* 

I 2 , I t'dt . ,1- , ( Cil i Cil ) 1,2= Zie-z, .le -t,:nz;e-z, (P1,2--\jl1,2, 

0 :rt ' 
zi 

fo = 1 + ~: - 2z;e-z,' ~ e1' dt + i -y;t" z;e-z,' ( (jlo(i)- ~ 1jJ0Ci)), 

*tg = tan. 
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(3.5} 

In the dispersion equation (3.1) we can write 
Wj = k11vA everywhere except in the expression for 
n1 (n1 = kc/w1 = kc/wk + iy1). Carrying out this 
procedure we find 

(3.6}t 

where 

i ctg2 it qfo- 2xd2 
q! = -q - ' 

2 /o + X; (ft2 + 2/2/o) 

i 1 + 2x;/2 
qz =- 2x;tg2 it /o + x;(N + 2/2/o) 

Now, using Eq. (2. 3) to find the ratios E3/E1 
and Ez/E1 and introducing Eq. (3. 4) for E ij we 
find the difference in the damping rates 

Va _ Vt = !_In Ea = _!__In qft + tg2 it ( 1 + 2x;fz) 
at Et at lo +X; (/t2 + 2/o/z} 

fJ E2 fJ qfo- X; tg2 it h 
V2- Vt = -In- = -In--:--:-------:-::-:--:--::-:-::-:· 

fJt Et fJt fo +X; (ft2 + 2/o/2) 
(3.7) 

It is evident that when J ~ 1 the quantities Ya - Yt 
and y2 - y1 are of the order of the reciprocal re­
laxation time for the background distribution func­
tion due to diffusion on the waves. It is evident 
that for sufficiently strong electric fields the dif­
ference in the damping rates (3. 7) can be of the 
order of the damping rate. 

In the stationary case, taking account of colli­
sions of resonance ions with nonresonance ions we 
find that the derivative of the distribution function 
with respect to v11, which determines the damping 
of the magnetohydrodynamic waves, is 

fJji I fJv11 = (fJjMi I fJv11) (1 + D / Dc<iJ)-1, (3.8) 

where the diffusion coefficient D is determined by 
the expression 

:ne2 ek ( w )" D = -- ~ o(wk- k11 v11 ) -x;2tg2it \-
2m;2 k nA2 , w; 

x! _5:_tg2 itqfo-_X;/t_, 2 ,1+ctg2 itqft+~-l-- V_1_2 12 

I /o + X; (/1 2 + 2/o/2) ctg2 it qfo- X;/t 2v;2 

(3.9} 

t ctg = cot. 

and K. N. STEPANOV 

Here, Ek=2IH21 2 = IH212 +(c/vA)2 1Etl 2 isthe 
spectral density of the energy in the Alfven wave. 
The quantities cp~J, which determine the damping 
rate y1 = y2 = y3 = y in (3.6}, are found to be 

1 r Xne-XdX 
m (i) = ~ ~ 1 + D/Dc(i) (3.10} 

We now consider the damping of the Alfven 
waves in a plasma with a high gas kinetic pressure 
K i » 1 in the case in which the Alfven velocity v A 
is appreciably smaller than the ion therm~l veloc­
ity. For weak high-frequency fields D/D\~J « 1 
the quantities cp~J ~ 1 and (3.6) yields the expres­
sions that are obtained from the linear theory: [ 4J 

y = YM where 

y w2 x·'/, ( 3 )2 
~= --- ~ ctgiJo--tgiJo . 
w w;2 l"S:rt 2 ' 

(3.11) 

In strong fields D/D~iJ » 1 the diffusion coeffi­
cient can be written in the form 

D(x) -A+ B(x- xo)2, 

1 + 2 ctg2 it 
x 0 = ' 

l"2:rtx; ( 1 + T;/Te) (2 ctg2 {)o- 3) 

w-ki!Dt k11(v2-vt) kll(vz-Vt} 
'i' = 'i't 2 ~ ln--- + --·--------. 

' k11v2-w 2(w-kllvt) 2(klwz-w) 

The second and third terms in 1/J are obtained by 
integration over the boundaries of the resonance 
region v 11 ~ v1, 2 • It is evident that 

2 
A/B ~ qlt,z/X; ~ 1. 

We use the notation y = B/D~iJ(O). Below, for rea­
sons of simplicity, we limit our analysis to the 
case in which 

(3.12) 

Inasmuch as A/D~i\o) « 1 in this case, the quan­
tity in (3.10) can be written in the form 

1 J xne-xdx 
qln(i) = ~ 0 1 + y(x- Xo)2(Dc(iJ(O)/Dc(x)] · 

Taking account of the relation in ( 3.12) we then 
find that 

qJ0(il=:rt/2l"y, qJ1(iJ=lny/2y, qJz(iJ=3(n-2)/4y. 
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Usi~g the expressions that have been obtained 
for cp~0 we then obtain the damping rate 

_!_ = - ( :n:x; )''• ( ~)2 ( ctg {} - tg {} 3 h) 2 f4)2(i). (3.13) 
W 2 W; \j)2 

The ratio of the nonlinear damping rate (3.13) to 
the linear damping rate (3.11) is 

'V :n;2rp2(i) 3:n:2(:n:- 2) 
- = -- =) --'-----'" 

'VM ¢2 4¢2y 
(3.14) 

This ratio can be greater than lUlity if 

1 I X;~ ¢ 2 < 3:n:2 (:n: - 2)· I 4y. (3.15) 

It is evident that for waves characterized by w/k11 
~(vi+ v2)/2 the quantity l/J2 « 1/Ki and y » YM if 
y ,...,Jij>> 1. 

Usually, the reduction in the derivative of the 
distribution function for the r-esonance particles 
(with respect to v 11 ) caused by wave diffusion 
leads to a reduction of the Cerenkov absorption. 
However, in the case considered here, a plasma 
with a high gas-kinetic pressure; strong wave dif­
fusion can lead to an increase in the Cerenkov ab­
sorption of the Alfven waves by the plasma ions. 

The damping rate for the Alfven wave, given by 
Eq. (3.6), and the coefficient for ion diffusion due 
to the Alfven waves (3.9), increase as 1/J.2 when 
J.- 0. However, these expressions can only be 
used when J.2 » w/wi· The damping of the fast 
magnetic-sound wave is reduced as J. is reduced 
and when J. « 1 the fast magnetic-sound wave is 
weakly damped even when Ki .2: 1. At small values 
of J. the phase velocities of these waves are close 
to the Alfven velocity so that both waves are very 
similar. 

We now consider the absorption of the Alfven 
and fast magnetic-sound waves excited by external 
sources with random phase in the case of small J. 
for steady-state oscillations when the diffusion due 
to the waves is balanced by collisions. 

Solving the dispersion equation we find that the 
complex frequencies for the Alfven wave and the 
fast magnetic-sound wave are determined by the 
expressions 

where the quantities are q± given by 

When J.2 » w/wi (3.16) becomes (3.6). The expres­
sion in (3.16) has been obtained in [ 41 for a Max­
wellian ion distribution. 

When J. « 1 the coefficient for ion diffusion due 
to the Alfven wave and the fast magnetic-sound 
wave assumes the following form: 

:n:e2 ~ 81< ( w ) 2 
D = -.--LJ <'l(w- kllvll)-2 - x;2{}2 

2mi2 k nA W; 

(3.17) 

We note that the expressions obtained above for 
the damping and the diffusion coefficient for J. « 1 
apply when the plasma pressure is not too large, 
in which case u = (w/wi) Ki is appreciably smal­
ler than unity. When u,..., 1 the phase velocities of 
the Alfven wave and the fast magnetic-sound wave 
can be appreciably different from the Alfven veloc­
ity. When J. = 0 the refractive index for these 
waves is given by n = n1 2[ 51 where 

' 
n1:2 = nA2/ (1 +a). (3.18) 

In this case the characteristic frequencies are 
w = w1, 2 where 

Wt,z = (k4vi4 I 4wi2 + k2vA2) •;, + k2vi2 I 2w;. (3.19) 

The damping for the waves given by (3.19) is ({3i 

= v/c) 

(3.20) 

The coefficient for diffusion on waves with frequen­
cies given by (3.19) is given by 

:n:e2 ~ ek. 
Dt,z = -- LJ <'l(w- kllvll)-

2mi2 lt nA2 

kvA \ 2 1 It n~ 2 , 2 X {}2xiz (-- I x +- _:._ . 
W; J fo nA2 

(3.21) 

In the region J.2 « w/ wi the expression in (3.16) 
yields (3. 20) for the damping rate if the quantity u 
is neglected in the latter. The diffusion coefficients 
(3.17) and (3.21) are also the same when J.2 « w/wi 
and u « 1. It follows from (3.20) that at small J. 
(J.2 « w/wi) the wave diffusion reduces the d~mping 
for the Alfven and magnetic-sound waves (cpp> < 1). 

4. CYCLOTRON DAMPING OF ELECTROMAG­
NETIC WAVES 

We now investigate the damping of electromag­
netic waves at frequencies close to or equal to the 
electron or ion cyclotron frequencies; it is as­
sumed that these waves propagate in a plasma 
with a low gas kinetic pressure Ki + Ke « 1. 

For a plasma with high density (v A« c) and 
w ~ wi it is possible that an Alfven wave can prop­
agate but this wave is subject to strong damping 
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when w- Wi· The damping rate for this wave for 
the case in which the resonance ions are located 
in the tail of the Maxwellian distribution has been 
found in [ 1J in the quasilinear approximation. The 
magnetic-sound wave remains weakly damped when 
w -- Wi· The expressions obtained in [ 1J cannot be 
used for the damping of the magnetic-sound wave. 

Two waves can propagate in the plasma when 
w ~ we: these are the ordinary wave and the ex­
traordinary wave. At small values of J. the extra­
ordinary wave is highly damped when w- c<Je· 
When J.- 1 the wave is weakly damped. The ordi­
nary wave is weakly damped for any value of J.. 
The damping of the extraordinary wave for small J. 
has been given in the quasilinear approximation 
in [ 1 J for the case in which the resonance elec­
trons have velocities along the magnetic field 
which are appreciably greater than the electron 
thermal velocity. 

In this section we shall consider ion cyclotron 
absorption of the fast magnetic-sound wave and 
electron cyclotron absorption of the ordinary and 
extraordinary waves. 

We start by considering the fast magnetic­
acoustic wave. Assuming that in the present case 
the quantity £ 33 is appreciably greater than the 
other components of the tensor Eij and appreciably 
greater than the square of the refractive index, we 
find from Eq. (2.3) that the quantity E3 can be neg­
lected. Under these conditions Eq. (2. 3) assumes 
the form 

( 4.1) 

where 

z = (w- w;)/12 kiiv;. 

2 z 1 00 v, 1 
\jJ = --= ~ e~' dt +- ~ xe_,- rlx ~ P --- _ll__ dvii, 

y'n 0 n 0 ,, Vii - Vres 1 + T] 

Vres = (w- w;)/kii. 

From the dispersion equation 

(e1- n2 ·cos2 1t) (e 1 - n 2) - t-:22 = (') 

we determine the refractive index (or the fre­
quency) and the damping rate for the magnetic­
sound wave 

( 4.2) 

v fx; cos 1t sin41} 
(4.3) - --------· -------

w y'Sn ( 1 + cos21J) '/, <Dz + 1jlz 

D 
TJ = D/f)· ( 4.4) 

(In the case of a Maxwellian distribution <I> = 1, 
the expression for the damping of the magnetic­
sound wave for w"" wi has been treated in [BJ.) 

The coefficient of ion wave diffusion is 
ne2 sin'ltx;v _~_2ek ezz' I 

D = flx = - -- · (4.5) 
8m;2w;2 1 Vii cos 1t- fJwk/ fJk11 I <D2 + 1jJ2 

In deriving (4.3)-(4.5) it was assured that the 
wave packet is sufficiently narrow in the magnetic 
field directionCiJ, so that the inequality t.k/k 
«k11v/wi ~ V7q holds. 

We note that in the case of strong wave diffusion 
(D/D~i> » 1) in the region 11}! I« 1 (more precisely 
I~· I« I <I> I« 1) the damping of the magnetic-sound 
wave increases proportionately to 1/<I>. It should 
be noted, however, that the amplitude of the elec­
tric field cannot be given as a specified quantity 
which is independent of <I>. The field amplitudes 
are proportional to the amplitudes of the extrane­
ous current densities j ext: 

When <I>- 0 and z = 0 the coefficients Pik are 
proportional to <I> so that for small <I> and z = 0 
the diffusion coefficient D~ Ek/<I>2 is independent 
of <I> and the absolute magnitude of the spectral 
energy absorbed per unit volume of plasma, yc::k, 
is independent of the amplitude of the extraneous 
currents for the case of large amplitudes since 
·y ~ 1/<f>, <I>~ Dc/D ~ 1/(jext)2 and Ek ~ (jext <f>)2. 
Thus, when the oscillations of the exciting cur­
rents jext increase the absolute magnitude of the 
absorbed energy no longer depends on the current 
amplitudes (saturation). 

We turn now to the electron cyclotron reso­
nance. The dielectric tensor at frequencies close 
to we for a plasma characterized by a low pres­
sure (Ke « 1) can be given by 

eu = ia + 1 - v I 4, Ezz = ia + 1 - v I 4 - 2ia, 

en = a - iv I 4- a, 

E13 = 1lzv tg 1t [ 1 + if-;:(ze-z' ( <D + i\jl)], 
£331 = ( v sin 2 1t /l"T cos 1t) Bunz [ 1 + iy'-;:tze-z' ( <D + iljl) ], 

a= Vn J Sue-z' (<D + iljl) I Ben cos 1t, (1 = aBe2n2 sin2 1t, 

z = (w- We) I l"2ki!Ve, v = (Qe I w) 2 < 2, Be= Vel c. 

(4.6) 

Here, the quantities <I> and 1jJ are determined by 
Eqs. (4.1) and (4.4), in which we now write 
x = v2 /2v2 and D = n<ee> + n<ei> For values of 1 e c c c · 
the angle J. which are not too close to zero, the 
diffusion coefficient and the damping rate are 
given by 
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D = [e2v_1_2 sin4 {}(2- v) 2 (2 + 2 cos2 {}- 4v + v sin2 1't)2ek] 

X[2n:ul2 1 VJI cos 1'} - OOlk I a kill ( 1 - v) 2 (2 cos2 1'}- 2v 

+vsin21't)2(<1>2+¢2)]-lr;Zz', (4.7) 

.1_ = 1/ ~- ~en cos 1'lj !___ <1> ez' ( 4. 8) 
(J) v Jt v Q Q:>2 + 'ljl2 ' 

P = (3j4v sin2 1't -- u cos2 fr)n" + [ 

- (1- v) (1- 1/ 4v) (1 + cos21't) 

- (1- 1/zv) sin2 1't + ve/zv- 1) 

X sin2 1't + 1/4v2 Lg2 1't(1 + cos2 1't)] n2 

+ (1- v) (1- 1/ 2 v) + 1/4v2(v- 2) tg2 1't, 

Q = 2 sin21'}n4 - (2 + sin2 {}- 2v)n2 + vn2 - 3v + 2v2• 

The dependence of the frequency on wave vector is 
determined by the dispersion equation of the 
zeroth approximation (v = S1~/w~): 

sin21'tn4 - (2- 2v + sin2 1't)n2 + (1- v) (2- v) = 0. 

We note that Eq. (4.8) is obtained under the as­
sumption that y « k11v e· Since n ~ 1, when J is 
not close to zero <P ~ 1 and I z I :::. 1 and we find 
from Eq. (4. 8) that y I w ~ {3 e• that is to say, 
y ~ k11ve. In this case Eq. (4.8) can only be used 
to obtain orders of magnitude (strictly speaking, 
the quasilinear approximation does not apply). For 
small values of J for the ordinary wave we have 
P ~ sin4 J « 1 so that y ~ k11ve sin4 J « k11ve· We 
note, among other things, that for the ordinary 
wave P « 1 even when J ~ 30 °-45 °. In the region 
of exponentially small damping (I z I » 1) Eq. (4.8) 
can be used for any J ~ 1. (For a Maxwellian elec­
tron distribution the expressions for the damping 
of the ordinary and extraordinary waves have been 
obtained in [ 71 for lzl» 1 and in [ 81 for the gen­
eral case I z I~ 1.) 

In the electron cyclotron resonance the damping 
for certain values of k (as in the case of the ion 
cyclotron resonance on the magnetic-sound wave) 
increases as 1/<P in the region <P « 1. However, 
the absolute magnitude of the absorbed spectral 
energy for these values of k (at increased ampli­
tudes of the exciting currents) tends to approach a 
constant value since the amplitude of the high fre­
quency field in the plasma ~ <P in this case. 

For all other k, we find </!2 » <P2 for <P « 1 and 
the absorbed power yEk is proportional to (jext) 4• 

In conclusion the author wishes to thank A. I. 
Akhiezer for his interest in the work and for valu­
able remarks. 
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