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The nucleon current density in a symmetric pseudoscalar meson theory with pseudovector 
coupling is defined such that it does not commute with the canonical momentum of the meson 
field. Some properties of the theory are discussed. 

THE interesting results in elementary particle 
physics which have recently been obtained with the 
help of the current algebra approach have revived 
the interest in the study of equal-time commuta­
tors. In this connection the problem of the consis­
tency of the canonical commutation relations be­
came important. The investigation of this point in 
different types of field theories may be useful. 

Some time ago, Schwinger showed that the vac­
uum expectation value of the commutator of the 
density of a conserved current with the charge 
density cannot be equal to zero. [ 1J He also ob­
tained a definition of the current such that this re­
sult is consistent with the equal-time commutation 
relations (cf. also [ 2 l). Very recently, Okubo 
showed that Schwinger's result is a consequence 
only of covariance and the spectral property and 
is also valid for nonconserved currents. [ 3J Con­
sidering a pseudoscalar meson theory with pseudo­
vector coupling, Okubo found that the above-men­
tioned requirement is inconsistent with the canoni­
cal commutation relations for this theory. He con­
cluded from this that the theory is internally in­
consistent. However, this assertion of Okubo's is 
incorrect. The apparent inconsistency noted in [ 3 J 

is avoided by a more accurate definition of the 
current density, similar to what is done in quan­
tum electrodynamics. 

A system of spinor and pseudoscalar fields with 
pseudovector coupling is described by the isospin­
invariant Lagrangian 

L = ¢ (ia- m 0) ¢ + 1j2{)~'-~a{)~'-~a _ lfzfloz~a~a + j~'-aa~'-~a. (1) 

(In our notation B = YJ.t aJ.! = Yoao- Ymam; Yt 
+ + 

= Yo; Y m = - Y m ; Y 5 = Y 5; D = -a J.! a J.t • The upper 
indices refer to the isotopic degrees of freedom.) 
The question of the correct definition of the axial 
spinor current jJf (x) will be discussed in detail 
below. 
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For the following we need the canonical momen­
tum of the scalar field 

:n:"(x) = ~a(x) + N:x.(x)·, 

the equations of motion 

( D - Jlo2) ~a (x) = {}1'-jl'-" (x) 

and the equal-time commutation relations 

[~a (x)·, :rt~ (0)] = i6aB6 (x), {¢ (x), 1j, (0)} = Vo6 (x), 

[~a (x), q·~ (0) J = {¢ (x), '\' (0)} 

(2) 

(3) 

= [ljJ(x), ~"(0)] = [¢(x), :n:"(O)] = 0. (4) 

If, following Schwinger, [ 1• 3 l we define the spi­
nor current by the limit 

j~'-"(x) =§!!.__lim[~ (x- 2e) ,V5VI'--ca¢ ( x + ~ )] , e2 < 0, 
2 E-+0 (5) 

then we find in accordance with what has been said 
before 

\[jma(x), iofl(O)]> = g2°
2 6a~{)n6{x)lim En 

E-+0 

(6) 

Nevertheless, the definition (5) is not quite satis­
factory. Indeed, the general requirements of co­
variance and the spectral property lead, together 
with the canonical commutation relations, to the 
representation 

<[j~'-a(x), ~B(O)]> = -i6"B ~ dx2p(x2)8~J.~(x, x2), (7) 

where 

(8) 

It follows from this that ([j~(x), a0cpfJ(O))) = 0, and 
hence 

<Um"(x), nB(O)]) = <Uma(x)·, j 0B(O)]) =/= 0. (9) 
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On the other hand, the operators j~(x) and 1r{3 (O) 

should commute owing to (4) and (5). Noting this 
contradiction, Okubo concluded that the theory un­
der consideration is inconsistent. 

However, a completely analogous situation pre­
vails in quantum electrodynamics, where owing to 
the equation div E = j 0 the current density also 
should not commute with the electric field inten­
sity. In order to guarantee that they do not com­
mute, it suffices to define the current in an explic­
itly gauge invariant way: [ 1• 2J 

. eo . [ -( e ) ]!,(:c)= -hm ¢ x--;)"' , 
2 £-+0 "' 

x+efZ 

V~<exp(ieo ~ d£~~<(£) )¢( x+~)]. 
x-e/Z 

( 10) 

An analogous result can also be found in our 
case. The gauge invariance of the operator (10) 
can be interpreted as an invariance under rota­
tions about a fixed axis in charge space. In a 
charge-symmetric theory it is natural to define 
each component of the current such that it is in­
variant under rotations about the corresponding 
axis in isotopic spin space: 

ljJ (x)-+ exp {igovs-r:<lv(x) }¢ (x), 

accompanied by a transformation of the corre­
sponding component of the meson field 

<pa (x) -+ <pa (x) -A, (x). 

Therefore one must adopt the definition 

(there is no summation over a in the exponent). 
It is easy to see that this definition of the current 
avoids the contradiction observed in [ 3 J, since now 

<Uma(x), :n:~(O)]> 

=~-oaBonb(x)~~ en ([ ~ ( x-; ), Vm¢( x + ~ )]) 
(12) 

in correspondence with (6) and (9). 
Let us now turn to formula (8). Using the spec­

tral representation 

<[<pa(x), <pB(Q)]> = ibaB ~ dx2p(x2)~(x, xz), 

\ dx2p(x2 ) = 1 (13) 

and Eq. (3), we easily find that 

(14) 

If there is no state with vanishing mass and the 
quantum numbers of the meson, then substitution 
of (14) in (8) gives 

~ = \ dxz_p(xZ) . 
llo2 • x2 

(15) 

For the neutral version of the theory this result 
was obtained by Hellman. [ 4 J This relation is gen­
erally characteristic of a theory with vector-type 
coupling. [ 2• 5 J 

Let us now write the propagator for the meson 
field in the form 

(16) 

where TI(k2) is the polarization operator. Assum­
ing that the integration over K2 does not begin at 
zero and setting k2 = 0, we obtain with the help of 
(15) 

TI(O) = 0. (17) 

The case Jlo = 0 requires special consideration. 
From ( 14) and the sum rules (13) and (8) it merely 
follows that 

(18) 

No further conclusions can be drawn from this. In 
particular, the renormalization of the mass of the 
meson field can be different from zero. For this 
it suffices that p-(K2) have the form 

p(x2) = -6(x2) +Zo(x2 -- 112 ) +a(x2). (19) 

The opposite assertion, made by Hellman and 
Roman, [ 6 J is unfounded. These authors did not 
take account of the fact that the equality K2 p(K2) 

=J15P(K2) [cf. relation (16) in [ 4J; it is equivalent 
to our formula (14)] with 116 = 0 only implies that 
p(K2) = bO(K2) but not (15). On the other hand, it is 
quite probable that (17) holds true also for Jlo = 0, 
since it is in our theory connected with the pres­
ence of a derivative of the meson field in the inter­
action Lagrangian. In this case there may indeed 
be no renormalization of the meson mass. 
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