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The formalism of the "integral over all histories" is applied to the quantization of the gravi­
tational field. It is shown that the functional space of all possible space-times has a curvature 
so that it is impossible to make the transition to operators and a dynamical theory. The quan­
tum theory of a weak gravitational field is a theory based on a functional space tangent to the 
curved space. If the interaction of the gravitational field with other matter is excluded one ob­
tains the classically defined metric, and the S matrix formalism can be applied. When the 
gravitational field is quantized the quantum theory of all other fields becomes necessarily of 
the S matrix type. 

1. INTRODUCTION 

THE problem of the quantization of gravitation is 
an important problem of physics not so much be­
cause of the practical necessity of including gravi­
tation in various processes, but rather because the 
establishment of a closed quantum theory of all 
fields including the gravitational field (i.e., of a 
quantum theory of space-time-matter) is neces­
sary for further progress in our understanding of 
the physical essence of the quantization procedure, 
the connection of this procedure with the proper­
ties of space-time, and also for a deeper insight 
in the properties of matter. The space-time rela­
tions play an essential role in the quantization for­
malism; for example, the operators of observa­
bles must commute if the points at which they are 
taken are separated by a space-like interval. But 
this concept is closely connected with the metric, 
with the geometry of space-time. If the quantiza­
tion of gravitation consists in turning the metric 
tensor into an operator, then the question arises 
how one can preserve the concept of a space-like 
interval. 

There exist a number of formal schemes for 
the quantization of fields, which can be divided into 
two groups: 1) the operator method (canonical for­
malism, [ 1J the dynamical principle of Schwin­
ger,[2l etc.) and 2) the Feynman method of the in­
tegral over all possible configurations of fields.[ 3- 5l 
All these schemes have been employed by various 
authors and in various modifications for the quan­
tization of the gravitational field, but despite a 

sufficient number of papers, the problem cannot 
be regarded as solved in principle. This is so, 
first, just because of the variety of versions which 
differ from one another in essential points, and 
second, because the overwhelming majority of the 
papers use, explicitly or implicitly, some auxiliary 
space-time for the quantization-either a Minkow­
ski space (cf., for example, [G-Sl) or a Galilei­
Newton space (for example, [ 9-lll ), which is not in 
accord with the principles of the general theory of 
relativity, and is possibly also principally useless. 

The quantization by means of functional inte­
grals is carried out in the following way: one con­
siders a functional space of all possible configura­
tions of the field to be quantized, y(xi), in space­
time and assumes that each of these configurations 
is realized with a probability amplitude propor­
tional to exp{iS[y(x)]/h}, where S[y] is the classi­
cal action functional. Each configuration of the 
field y(x0, x1, x2, x3) is a point in the functional 
space and the action is a function of this point. The 
distance between the points y1(x) and y2(x) is de­
fined as 

l2 =N~ IY!(x)-yz(x)l 2 f-gd4x. (1) 

It is invariant with respect to the transformation 

y'(x) = y(x) +YJ(x). (2) 

Thus the transformation (2) transforms the func­
tional space into itself-it represents a motion of 
this space, and owing to the commutativity of 
transformations with different Y/ (x), it is a trans­
lation. It follows from this that the functional 
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space under consideration is flat (Euclidean). To 
every two points of this space y1(x) and y2(x) one 
can assign a vector a(x): 

a(x) = Y1 (x) - y2(x). (3) 

The vectors are invariants of the translation 
group (2). The value of the functions a(x) is the 
projection of the vector a onto the locus deter­
mined by the point x. Thus each point of the four­
dimensional space-time determines a locus. A 
measure of the density of the loci is the four­
dimensional volume of the space-time region. The 
functional space of the vectors a(x) can be divided 
into orthogonal subspaces by dividing the four­
dimensional space into regions (of dimensionality 
0 to 4) each of which determines the loci on which 
each subspace is constructed. As a consequence, 
the functional integral over all space-time be­
comes a product of functional integrals in the cor­
responding subregions. In particular, subdividing 
the space-time into non-intersecting space-like 
hyperplanes (SLH), we obtain a representation of it 
in the form of a product of functional integrals in 
open space-time regions and in the SLH which 
bound them. 

If a functional of the probability amplitude for 
the distribution of the field on the hypersurface 
t = -oo is given, this same functional is on the 
hypersurface t = +oo determined by the propaga­
tion operator 

G[+ oo, y'; - oo, y"J 

= N-1 ~ exp{: S [y (x); y', y"] }by (x). (4) 
-00 

Here N is a normalization factor; integrals of the 
type J 6y(x) are understood in the sense of func­
tional integrals. Then 

00 

qr [ + oo, y'J = ~ a l+ oo, y';- oo, y"J w [- oo, y"Jby". (5) 

Since the functional space is flat, the integral 
(4) separates into a product of functional integrals: 

co O't 0'2 +oo 

~ = ~ X ~ X ~ X ... X ~ X ~ . (6) 
a, a,t an 

We can thus also introduce a functional of the prob­
ability amplitude (state vector) on intermediate 
hypersurfaces: 

lf(a) = G(- oo, a) 'I'(- oo); 

a' 

G(a,a')=1V-1 (a,a') ~exp{: S[y]}by. (7) 
a 

The multiplication is understood in the operator 
sense, i.e., it implies an integration over the func­
tional space of the functions on the hypersurface. 
The operators are defined in the following manner: 

co 
' \ (i 1 ' 
y(x) = N-l ~""y(x)exp l hS [y] Jby(x)G( + oo;- oo). (8) 

The invariance of the functional space with re­
spect to the transformations (2) implies the in­
variance of the volume element 6y with respect to 
the shift[ 21 

o (y + TJ) = oy. (9) 

This leads to the equations of motion in operator 
form: [ 121 

~ exp{ {s[y]}by 

= ~ exp { -~ S [y + TJl} 6 [y + TJl 

i { i i \ 6S } ~ ·'exp hS[y] +h.loy TJ(x)dQ oy 

( · os · 
~ ~ 1 +~ ~ -TJdQ) exp{~s[yJ}oy 

h · oy h 

= ~ exp{{-S[y]}oy 

i r r os · 
+h.' TJ(x)dQ.) oy(x)exp{~ S[y]}oy. (10) 

Since 1J(x) is arbitrary, we have 

(11) 

As a consequence we obtain the operator form of 
the principle of least action: 

A 

os / 6y(x) = 0. (12) 

Thus the quantization by means of functional 
integrals in a Euclidean functional space is equiv­
alent to the operator form of quantum field theory. 
But, as we have seen, the definition of a flat func­
tional space requires a definite system of unit 
vectors, i.e., the geometry of space-time must be 
given. Therefore the authors who have attempted 
to quantize the gravitational field in operator form 
(like an ordinary field) were forced to take re­
course, explicitly or implicitly, to some auxiliary 
space-time-the space of quantization. Misner[ 121 

has tried to avoid this by constructing a functional 
space only on a topological four-dimensional mani­
fold without a definite metric; however, he was led 
to a dynamical theory in which there is no dynam­
ics. Thus, for example, the state vector is the 
same on all hypersurfaces; the Hamiltonian, which 
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is identically equal to zero, leads to operators 
which are also equal at all points of space-time. 

It will be shown below that the functional space 
in which the functional integrals for the quantiza­
tion of the gravitational field are defined, is 
curved, so that the transition to a dynamical theory 
is impossible. Isn't this an enormous difficulty, 
so unnatural that one should search for other 
methods in developing a quantum theory of gravi­
tation? It turns out that functional spaces with 
curvature are no less rare or artificial than the 
usual Riemannian spaces. The simplest example 
of such a space is the manifold of relativistic 
time-like trajectories in a two-dimensional 
pseudo-Euclidean plane (x, T) joining the points 
A(O, 0) and B(O, 1). The interval in a plane is 
given by the quadratic form 

(13) 

If in this functional space, we define a group of 
infinitesimal motions by the infinitesimal trans­
formations 

•' = 't + e[u(,; + x)· + v(•- x)], u(O) = u(i) = 0, 

x' = x + e[u(,; + x) - v(-c- x)], v(O) = v(i) = 0, 
(14) 

which transform this space into itself (i.e., trans­
form each time-like curve leading from A to B 
into another such curve), we easily see that the 
generators of this group of transformations do not 
commute: 

f) f) 
L1 = u1(£) -+ v1(1']) -, 

a£ a11 

s = 't + x, 11 =,;- x; 

If we set T = ct and let c go to oo, then the 
transformations have the form 

t' = t + E lim ~ [ u (t + _:_) + v ( t - _:_ )] -+ t, 
c-.oo C C 1 \ C , 

(15) 

x'=x+e!~~ ['u(t+ :)-v(t- :)J-+x-t-E1'J(t), 

11 (t) = u (t) - v(t). (16) 

The generators of this group commute with each 
other: 

(17) 

In this case (in the nonrelativistic limit) the space 
of trajectories becomes flat, and it was with the 
help of this space that Feynman[ 3 J first con­
structed a quantum mechanics of nonrelativistic 
particles in the form of integrals over all paths. 
Because of the curvature of the space of relativis­
tic trajectories, there exists no quantum mechan­
ics of relativistic spinless particles. 

The next step in constructing a quantum theory 
of gravitation is the study of the curved functional 
space of all possible space-like hypersurfaces in 
four-dimensional space-time (the space of SLH). 

2. THE SPACE OF SLH 

A hypersurface in a four-dimensional space 
with the topology and the signature of a Minkowski 
space will be given by defining the four-dimen­
sional coordinates xi of its points as functions of 
three variables-the coordinates of the hypersur­
face: 

xi= xi(urx.), i = 0, 1, 2, 3, a= 1, 2, 3. (18) 

All SLH are isomorphous to the three-dimen­
sional Euclidean space and can be obtained, one 
from the other, by successive infinitesimal trans­
formations: 

(19) 

In the manifold of the SLH we can introduce a 
!9pology by defining an E neighborhood: the SLH 
1:, connected with the SLH 1: by the transforma­
tion (19) lies in the E neighborhood of the latter if 
loxi(u) I< E for all i and all values of the varia­
bles ua. Thus the set of all SLH forms a topologi­
cal space whose points are different SLH. The 
functionals of the functions on these hypersurfaces 
are functions of the points of this space. 

The set of SLH which depends on a single pa­
rameter t forms a one-dimensional path in this 
manifold. 

The various derivatives axi /oua form a rec­
tangular 3 x 4 matrix. Its third-rank minors are 
components of the covariant pseudovector ni. 
These components are pseudoscalars with respect 
to transformations of the variables uO'. Using the 
ni one can define the four-vector of the volume 
element of the hypersurface directed along its nor­
mal and with a modulus equal to the volume ele­
ment: 

Let us now introduce the notion of distance be­
tween two points in the space of the SLH as the 
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mean distance between the corresponding hyper­
surfaces: 

1 (' 1 \ ( 6xini) z 
dZZ= lim-_\[6xn(u))2da= lim-.) 2 da. (21) 

a-HlO a · o-+oo cr n 

Here oxi is the field of the displacement vector on 
account of which one SLH goes over into another, 
and oxn is its normal component. Since the tran­
sition from one hypersurface to another is due 
only to oxn, only this component takes part in the 
definition ofthe distaBce. Therefore we may take 
oxi as being directed along the normal: 

(22) 

For infinitesimal transitions along the normal only 
transitions between SLH are possible. A transi­
tion out of the light cone is excluded since the nor­
mal to it lies on it. 

If we introduce the notation 

oxn(u) = v(u)-dl, 

we conclude from (21) 

lim__!_~ v2 (u)da = 1. 
a-+oo a 

(23) 

(24) 

If we consider the space of real scalar functions 
of three variables ua with the scalar product 

( qnjJ) = lim _1:__ ~ <Jl ( u) 'ljJ ( u) da ( 2 5) 
0-+00 0' • 

and the norm 

(26) 

we see that this space is tangent to the space of 
SLH. The quantity v(u) is a unit vector in this 
space and defines the directions along which the 
transitions from one SLH to another can be accom­
plished. The scalar functions on the hypersurfaces 
are (contravariant) vectors in the space of SLH. 
Formula (25) defines the metric of the space of 
SLH. 

We can introduce the operation of functional 
variation in the transition from one SLH to an­
other; to this end we must introduce functional 
Christoffel symbols. A repeated variation deter­
mines the functional curvature tensor. The corre­
sponding flat space is the space of SLH in space­
time with a velocity of light equal to zero. Here 
any hypersurface without a tangent time axis is 
space-like. If we choose the spatial coordi.nates 
x1, x2, x3 as the variables ua and interpret the 
vector space of the functions of these coordinates 
as the manifold of all possible dependencies of the 

coordinate x0 on x1, x2, x3, then the whole space 
coincides with the tangent space. The normal to 
each hypersurface is directed along the time axis, 
and the volume element is always equal to 
dx1dx2dx3, i.e., the metric is independent of the 
point. If c f 0, not all functions x0 (x1, x2, x3) are 
admissible, and the metric changes from one SLH 
to another. 

If the hypersurface is tangent to the light cone 
in some point, then n = 0 in this point although 
ni f 0, and if in this point oxini f 0, then dZ 2 = oo. 

Hence a hypersurface which is tangent to the light 
cone is metrically infinitely far from a SLH which 
does not pass through the tangent point (although 
topologically they may lie in the same E neighbor­
hood with a small E). In particular, the light cones 
are infinitely far from all SLH and form a limiting 
manifold in the space under consideration. 

With the help of the space of SLH we can con­
struct a classical field theory in a covariant Hamil­
tonian form. Moreover, it plays an essential role 
in the representation of quantum field theory in the 
form of functional integrals, for the SLH constitute 
the points between which the propagation operator 
is defined. However, these questions lie outside 
the scope of our basic aim. 

3. FUNCTIONAL SPACE OF ALL POSSIBLE 
SPACE-TIMES 

The quantization of the general theory of rela­
tivity by the method of functional integrals con­
sists in the following postulate: [ 12 J in contrast to 
the classical theory, where only those space-time 
configurations exist in reality which satisfy the 
Einstein equations, the quantum theory assumes 
that the physical space-time can be an arbitrary 
Riemannian space with the signature (- 3, + 3) 
which is realized with a probability amplitude 
proportional to eiS/h, where S = K- 2 jR ds-2: 

A [g] = l\'- 1 exp{ __!__I RdQ t 
hx2 .l J · 

(27) 

The normalization constant is determined from the 
requirement 

~ A*Ao {all possible space-times} = 1. (28) 

It is now necessary to construct a measure in 
the space of all possible space-times. First it 
must be noted that by successive infinitesimal de­
formations of space-time we only reach spaces 
with the same topology. Spaces which are not iso­
morphous to the Minkowski space must either be 
excluded altogether or introduced in a special way 
(for example, by taking the sum of functional inte-
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grals over spaces of different topological types). 
For the time being we shall assume that the func­
tional space is formed of spaces which are iso­
morphous to the Minkowski space. As is known, [ 15 J 

any such space can be regarded as a four-dimen­
sional hyper surface with the signature ( -1, + 3) in 
a ten-dimensional plane space with the signature 
(-1, +9) or (-7, +3), so that all normals are 
either space- or time-like. The transition from 
one space-time to another is effected by shifts in 
six normals, i.e., is described by six functions of 
the four variables xi. 

However, different points in such a functional 
space can have the same internal geometry-these 
are the ones which are obtained from each other 
by shifts and deformations in the ten-dimensional 
space. An internal transition (i.e., one independent 
of the imbedding) can be described with the help of 
the tensor ogij (x) which characterizes an infini­
tesimal deformation of space-time. However, in 
order to preserve the previous number of degrees 
of freedom, the components of this tensor must be 
related via four additional conditions. Apart from 
this there is still an arbitrariness in the choice of 
the coordinate system in space-time. 

A concrete description of the functional space 
thus obtained can be given in the following manner: 
for each given metric one can define an infinitesi­
mal region of the functional space near the space­
time with the metric tensor g1j(x): 

gu(:.r) = gi}(.T) + 6gi;(:.r), (29) 

where ogij is restricted by four conditions. This 
procedure can be carried out in covariant 
form. [ 16• 17 J The volume V- gfl dx0dx1dx2dx3 defines 
the "number" of the unit vectors in the space of 
ogij in each region of space-time. However, the 
ogij do not vary between -oo and + oo, as other 
quantized fields do but only within an infinitesimal 
range of values. Therefore, the functional space is 
flat with respect to such infinitesimal ogij (tangent 
space). The entire functional space can be covered 
by such infinitesimal regions. It is a curved func­
tional space since a system of unit vectors is given 
in each point and there are no common unit vec­
tors for the whole space. The metric is given by 
the infinitesimal deviations ogij' as in the linear­
ize~t theory of gravitation. In the neighborhood of 
each space-time we construct a linearized theory 
of gravitation. 

What is the essential physical difference be­
tween our scheme and other attempts to quantize 
the general theory of relativity by means of func­
tional integrals (refs. [ 5, 12 • 13 J, etc.)? It lies in 
the fact that in the other approaches the integra-

tion goes over the functional space of the tensor 
gij or over the quantities aF connected with it: 
gij = E af3 a ~af, where E afJ is the Minkowski ten-

sor. This functional space is built on some space­
time-the space of quantization. This results in a 
dynamical theory with a given and unalterable 
space of quantization. But then the tensor gij, 
which is varied, practically loses the meaning of 
a metric tensor, although it serves for contrac­
tions. In our method, on the other hand, we inte­
grate over all possible types of space-time without 
introducing any auxiliary spaces of quantization. 
The metric tensor determines the geometry of 
each space-time on which the functional spaces for 
the other fields as well as its infinitesimal defor­
mations are constructed. It should be noted that in 
such a description there is no question as to what 
should be quantized-gij or ai. The space-time 
itself is quantized (varied). 

4. NONGRAVITATIONAL FIELDS 

The quantization of nongravitational fields 
[ y(x)-in general a multi-component field) in the 
quantization of gravitation is carried out in the 
following way: a) all possible types of space-time 
are realized with the probability (27); b) in each 
space-time all possible configurations of fields 
are realized with the probability amplitude 

Ag[y] = Ng-1 exp{ !. S[y, gJ}, (30) 

where S [y, g] is the classical action, and the in­
dex g indicates a definite space-time. Thus the 
probability amplitude for the whole combination is 
given by 

A [y,g] =A [g]Ag[y] = (NNg)-1 expf _£__ ~ [-~R +z] dQ. 
~ h • v2 _ 

(31) 

In other words, in each space-time one must de­
fine a quantum field theory and "sum" over these 
with the probability amplitude of the correspond­
ing space-time. In the description of the quantum 
theory of interacting fields we shall use the method 
of adiabatic switching on of the interaction of the 
gravitational field with other matter. Since the 
classical equations of gravitation have the form 

(32) 

the switching off of the interaction corresponds to 
the vanishing of the gravitational constant K. But 
in the functional integral K enters only in the com­
bination K2h (h is the Planck constant); therefore 
the vanishing of K leads to the same result as the 
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vanishing of h in the gravitational terms, which, 
by the correspondence principle, leads to the clas­
sical equations of gravitation in empty space: 

(33) 

For vanishing K we thus obtain the classical 
space-time [determined by (33)] and in it, a quan­
tum field theory, since the vanishing of K does not 
affect the nongravitational terms. We are left, 
moreover, with a field of free linear gravitons. 
Indeed, let us consider Gupta's[ 7J expansion of the 
Lagrangian of the gravitational field in powers of 
K by writing 

(34) 

Here Eij is a metric which satisfies (33) or equa­
tions of gravitation with given macroscopic masses 
(i.e., a macroscopic metric). It is usually sim­
plest to choose it to be flat. As K tends to zero, 
(34) leads to gij = Eij• i.e., the metric is unaf­
fected by changes in hij· However, the Lagrangian 
of the field expressed through the tensor hij, does 
not vanish since the term which is quadratic in 
hij does not contain the gravitational constant K. 

This corresponds to a field of free linear gravi­
tons; however, the tensor hij which describes 
these has no longer the meaning of an addition to 
the metric, which is uniquely defined. 

Thus we shall assume that for t - ± oo, K - 0 
the space-time goes over into a flat space and that 
there exists a field of free gravitons described by 
a linearized theory of gravitation. [ 6- 8] Switching 
on of K between t = - oo and t = + oo does not lead 
to the inclusion of the next terms in Gupta's ex­
pansion, but to a variation over all spaces which 
become flat at infinity. In each of these spaces, 
one can introduce an Sg matrix through the inte­
gral (30) or by some other means. It will be a 
functional of the space-time. The complete S ma­
trix is obtained with the help of the probability 
amplitudes for each space-time: 

s = N-1 ~ S8 exp {~ ~ RdQ )Jbg. 
hx2 

(35) 

Here 6g is the volume element of the functional 
space introduced in the preceding section. Analo­
gously we define the propagation function between 
the hypersurfaces t = - 00 and t = +oo as the 
propagation function averaged (in the amplitude) 
with respect to space-time: [ 18 J 

~ G(r,r';g)exp( h~2 ~ RdQ) (Sg)obg 
G(r r') =-------- -- ,___ (36) 

' ~ exp (h:2 ~ RdQ) (Sg) 06g . 

For n fermions interacting only via the gravi­
tational field (for example, neutrinos) we have 

~ G(r1 ••• rn;r/ ... rn';g)(Sg)oexp(dh-~ RdQ )bg 

~ (Sg)oexp c2~ ~ RdQ) bg (37) 

where 

G(r~, ... rn; r1' ... rn'; g) = det!G(r;, r/; g) 1. (38) 

Thus the fermions do not interact in each separate 
space-time; but it is impossible to write the com­
plete function (37) in the form (38), which indicates 
that there is an interaction between the particles. 

If there are gravitons at ± oo the S matrix is 
defined in the follqwing way (for one graviton at 
-oo and none at +oo): 

S;i (r) = lim JV-1 ~ [g;i (r, t)- e;i] Sg exp (+ ~ RdQ) bg. 
t-+-co X X h 

x(-oo)-+0 

(39) 

Analogously we can introduce the complete S 
matrix including gravitons. 

We note that if we had defined the functional 
space of the gravitational and nongravitational 
fields in a given space of quantization, then we 
could, in principle, carry out the integration over 
6g in (35) or (39) (in analogy to the elimination of 
the boson field in [ 18 J) and we would be left with 
the interacting nongravitational fields. But then 
they would be given in a definite space of quantiza­
tion and the gravitation would not be equivalent to 
a curvature of space-time. Thus the quantization 
in a space of quantization is inconsistent with the 
spirit of Einstein's theory of relativity. 

5. IMPOSSIBILITY OF A DYNAMICAL THEORY 

In the quantization of the gravitational field the 
corresponding functional space cannot, because of 
its curvature, be written as a direct product of 
subspaces defined by some regions in space-time. 
Therefore, it is impossible to write the integral 
of (31), which carries >¥( -oo) into ..P(+oo), in the 
form of a product of independent propagation oper­
ators between certain hypersurfaces, and thus the 
state vector can only be introduced at t = ± oo. In­
deed, the state vectors are given on the system of 
SLH. But to which space-time can this system of 
SLH belong if the space-time is varied? Perhaps 
it belongs to all spaces at the same time? Other­
wise one must introduce an auxiliary space-time, 
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distinguished from all other space-times, in which 
the system of SLH can be defined. 

Let us see whether it is impossible to establish 
a one-to-one correspondence between the SLH in 
different space-times. To this end there must first 
be a correspondence between the boundary points 
of the corresponding spaces of the SLH-the light 
cones. Let us assume that we have established 
such a correspondence for two spaces and have in­
troduced such a system that corresponding points 
have the same coordinates. [ 17 l Then we have on 
the light cones 

(!)d 'd . gii x' xJ = 0, (2)d . d . 0 
gii x' x' = . (40) 

Here each solution of one equation must be a solu­
tion of the other. This i_mplies g1f = A.g<l( Since 
this must hold for all x1, this means that spaces 
(1) and (2) are conformal. Since four-dimensional 
Riemannian spaces are in general not conformal 
to one another, this correspondence is not possible 
for all spaces-the spaces of the SLH of different 
space-times are not topologically isomorphous to 
each other. This means that, whatever coordinates 
common to all spaces we introduce, no hypersur­
face equation will describe a space-like hypersur­
face in all space-times simultaneously; by the 
causality principle no state vector can therefore 
be defined on it. 

In each space-time we can introduce operators 
of nongravitational fields y(x) whose dynamics is 
described by a quantum field theory in the given 
space-time. The formal averaging [summing with 
the weight function exp{(i/K2h) jRd S1] over all 
space-times does not, because of the absence of a 
unique correspondence between their points, lead 
to a uniquely defined operator for different corre­
spondences; one and the same operator in one 
space-time corresponds to different operators in 
another space-time. Hence the introduction of 
coordinate-dependent operators in the quantization 
of the gravitational field is devoid of physical 
meaning and the only characteristic of the system 
is the S matrix. The introduction of a metric 
operator is meaningless for the same reasons. 
The theory becomes in essence an S matrix the­
ory. This is in agreement with Heisenberg's point 
of view, which has been actively developed in the 
last decade. A specific physical verification of 
this result may be seen in the conclusion of Bron­
shte'ln[ Sl that the components of the gravitational 
field are principally unobservable according to the 
quantum theory of measurement. Bronshte'ln con­
cluded in his article that it is necessary to alter 
the quantum theory of gravitation radically. The 
transition to an S matrix theory does just this. 

6. CONCLUSION 

Thus the Feynman formalism is the only useful 
one of the existing formalisms for the quantization 
of the gravitational field regarded as the quantiza­
tion of space-time. This leads to the conclusion 
that this method of quantization is in some sense 
better than the others, having a deeper physical 
meaning. Up to now, as long as the functional 
space of the quantized field is flat, this method of 
quantization can be used to derive others, for ex­
ample Schwinger's dynamical principle, and all 
these methods are equivalent. But as soon as the 
space of quantization becomes curved, the opera­
tor dynamical principles of quantization become 
useless and the theory is in essence an S matrix 
theory. 

As to a practical account of gravitational ef­
fects: as long as they are small their contribution 
to the integral of (31) gives only space-times 
which are nearly flat, i.e., a small region of func­
tional space. But in the small this space is flat 
(coincides with the tangent space). The theory cor­
responding to the tangent space is the quantum 
theory of the weak gravitational field with an aux­
iliary Minkowski space of quantization. [S-Sl 

Therefore one may use this theory to take account 
of weak gravitational effects. 
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