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We consider non-adiabatic transitions in a system of two parabolic terms coupled by a constant 
interaction while the magnitude of the interaction of the system under consideration and the me­
dium is arbitrary. Localized thermal transitions of electrons in condensed media correspond 
to such a model. We find a solution in the semi-classical approximation for the case of a suf­
ficiently weak coupling between the terms. The non -trivial factor multiplying the exponential in 
the expression for the transition probability has a Lorentzian form with a half-width depending 
on the activation energy, on the coupling between the system and the medium, on the tempera­
ture, and on the correlation time in the medium. 

WHEN studying certain localized atomic proc­
esses in condensed systems, the problem arises 
of non-adiabatic transitions such as predissocia­
tion, [ 1 J and this problem is nevertheless appreci­
ably different from the corresponding process in 
collisions in gases because of the presence of 
bound states of the system at the beginning and 
end of the process. The system is concentrated 
periodically in possible states, but a definitive 
separation of these does not occur at any time. 
Such a problem has already been discussed in the 
literature (see, e.g., [2, 3]) in connection with the 
problem of thermal transitions of electrons in im­
purity centers in crystals. The result of these 
papers can be reduced to the proof of the fact that 
at high temperatures the transition has an activa­
tion character, while at low temperatures its char­
acter is that of a tunnel effect. The magnitude it­
self of the transition speed cannot be found exactly 
as the application of a stationary treatment of the 
problem, used in [ 2 • 3 J is incorrect in the case con­
side red. This is, in particular, reflected in the 
fact that the applicability of the final expression 
for the transition speed turns out to be undeter­
mined. 

A rigorous statement of the problem of a lo­
calized transition in a medium is to treat it as a 
relaxation process: the system is given in one of 
two possible states (we assume the corresponding 
terms to be parabolic) and we must determine the 
time sequence of the relaxation to a statistical 
equilibrium in the two states. 

To find a solution we shall use a semiclassical 
description of the motion of the nuclei and there-

fore use the Schrodinger equation in the following 
form[ 1J (n = 1) 

i(~t)=(ut+atxq, ~ )('llt). (1) 
¢2 ~. Uz + azxq ljlz 

Here 1/!1 and 1/!2 are the semiclassical functions of 
the nuclei in the first and in the second electronic 
states which correspond to the terms u1 and u2; 

{3 is a constant interaction between the terms, as­
sumed to be real; a 1 and a 2 are the parameters 
of the interaction of the system with the medium; 
x and q are the coordinates of the system and of 
the medium; 

(2) 

The distance between the equilibrium positions 
of the oscillators (2) must be sufficiently small so 
that we can introduce an average trajectory of the 
motion (corresponding to ii. in the figure) 

X= XoCOS wt. 

The appropriate inequality looks like [ 4 J 

The natural condition for the applicability of the 
semiclassical approximation, the inequality 
w2 ii2 »~E. where x is the quasi-intersection 
point of the terms, is satisfied by virtue of ( 4). 

(3) 

(4) 

We introduce the following notation for the ele­
ments of the density matrix: 

-_ 'llt'llz 
X+= x_ = --=-· Xo = ('i'~~-'~2¢2)/2 

1"2 (5) 
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E 

u, and u2 : electron terms; IT :term corresponding to motion 
along the average trajectory; x : coordinate of the quasi-inter­
section point; uaxq : interaction of the system with the medium 
leading to the relative broadening of the levels. 

so that 

X= iQX, (6) 

where 

(·x+). (~" u, o, -V2~) 
X ~ x_ ' Q = , _ -~aU, jl2 ~ ; 

Xo -Vz~.vz~, o 
(7) 

(S) 

We shall asswne that !:.a/a « 1 (where a 
= ( a 1 + a 2) I 2) so that in what follows we need not 
take into account the process whereby equilibrium 
is established separately in u1 and u2• The ma­
trix equation (6) corresponds to the usual integral 
equation: 

~ t+tt 

X0(t+t)-X0 (t)=-qi2~~ {x+(t)exp[i ~ ~o:n(s)ds] 
0 t 

t+t, 

-X_(t)exp[-i ~ ~au(s)dsl}rltt 
f • 

~ t, t+tt 

- 4B2 Re ~ dt1 ~ dt2X0 (t + t2)exp[ i ~ ~o:u(s)rls] . (9) 
(I 0 t+t~ 

Denoting the term proportional to {3 by L(X±(t) T ), 

applying perturbation theory with respect to {3 (the 
necessary criterion for this will be found in what 
follows), and averaging Eq. (9) over the coordinates 
of the medium, we find 

<Xo(t + t) >- <Xo (t)> = (L (X± (t), r> 

The possibility of a separate averaging on the 
right-hand side of (10) is justified only under the 
condition (see in this connection [ 5 l) 

we assume that 

(11) 

This means that the change in the density matrix 
is considered over a time interval which is much 
larger than the correlation time 1/y in the me­
dium so that we can neglect the influence of the 
system on the dynamics of the motion of the me­
dium. 

Under the condition y /w « 1 and for a Gaussian 
distribution of q (a random interaction in a liquid 
or phonons in solids, the dispersion of which we 
neglect) 

t+tt 

iU(t', 8) = ( exp [i ~ ~an(s)ds]) 
f+t, 

-
(6+1')/2 

=exp[i \ ~n(s)ds-qJ(t',e)J, 
0-t')/2 

where 

(~a) 2( qo2 >xo2 
cp(t', 8) = 2 i[yt' + 1- cos wt'cos 8 

w 

+e W(cos8-coswt)], 

We change variables, t 1 - t 2 - t' in (10): 

~ 't 

- 4~2 RoSell'~ dt/vf (t', 0) (X0 (l) ), 
0 t' 

e = cu(2t + 2lt- t'). 

If we now consider the expansion 
00 

(12) 

(13) 

(14) 

M(t',O)=Ao(t')+ LAn(t')eine, (15) 
n=1 

we see easily that its contribution from terms with 
n f. 0 to the integral in ( 14) is less than the contri­
bution from A0(t') at least by a factor 1/Twn. Us­
ing the conditions imposed earlier upon T and y 
we can restrict ourselves in (15) to the first term 
and we obtain the result 

(X0 (t + t))- (Xo(t)) = (L(X±(t), t)> 

I f\2 't :t 

-.::::.___He\ (t- t')dt' 'i d8M(t', El)(Xo(t)>. 
Jt • .l 

0 0 (16) 
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If now 

we can drop, even for the smallest values of Xo 
which are important for the transition, t' in the 
difference T - t' and extend the integral over t' to 
infinity. If {3T » L we can also drop in (16) the 
term of first order in {3 as its ratio to the second 
order term is 1/{3T. 

Thus 

In that case 

r ~2 
fl' = -~-- e-Eo/kT 

~2 +f2 ME ' 

where 

r = 2Eo(L\a) 2<qo2>v 
fi2w3 ' 

E - (!lE)2 2 
o-2f?2w, 

!l = !lE _ E(!lE), 
fiw fiw 

and E(a) is the integral part of a. 

(25) 

(26) 

(Xo(t + T)>- (Xo(t)> = -WT(Xo(t)>, (17) As D.E = Fx, Eq. (25) can be changed to 

where 
4~2 co l'l 

W = -Re ~ dt' ~ deM(t', e). 
n o o 

(18) 

If WT « 1 we can rewrite Eq. (17) as a differ­
ential equation: 

d 
-(X0 (t)> =- W(X0 (t)>. 
dt (19) 

To find the observed transition velocity and 
elucidate the final conditions for the applicability 
of a possible result we must average W over the 
equilibrium distribution of Xo corresponding to the 
motion along the average trajectory 

( 2 )'/, r { Xo2 } 
W = Jt \xo2) ~ exp - 2 <xo2) W (xo) dxo. (20) 

The result of this averaging has the form 

21'2 ~2 co l'l 
fV = --Re ~ dt' ~de [1 + 2cpo(t', e)]-'/, exp [i~Et' 

:It 0 0 

- cD (t', e)]. (21) 

Here 

cpo(t',8) = cp(t',e) lxo'=<x'> 
0 ' 

(~A)2<x02) wt' e 
cD(t' 8) = 2 sin2 -cos2 -·. (22) 

' 1 + 2cpo ( t'' e) 2 2 

We shall now consider the physically most 
natural case 

(23) 

As the interaction of the system with the medium 
is usually relatively weak, (23) is satisfied at all 
temperatures. Under experimental conditions the 
following inequalities (in the usual units) are prac­
tically always also satisfied: 

~E ~ fiw, kT I fiw ~ 1. (24) 

- (J) W = - W De-Eo/kT 
2n ()L • 

(27) 

Here W0 is probability for a transition near x 
which was evaluated by Landau and Zener, while 
the physical meaning of the quantity 

P=_!_r_ 
Jt /).2 + f2 

becomes clear, if we write 

P=_!_\b(w-w1)_ r dw. 
Jt J (w-w2)2 + f2 

(28) 

(29) 

Here w1 and w2 are the frequencies, in units of 
w of the levels approaching the point x in the first 
and the second state. Because of the equivalence of 
the levels in Ut and u2 we have Wt - w2 = D.. 

When using perturbation theory to evaluate the 
transition probability the semiclassical wave func­
tion of one of the states occurring in the expression 
for the transition probability is simply a constant 
while the function of the other state which is linear 
in {3 depends on D-au, and the level of the first 
state is therefore not broadened while that of the 
second state has a width r ~ (D.a)2 (see the fig­
ure). The probability that the packets correspond­
ing to the levels of the two states which we are 
considering and which are approaching one another 
and the poi~ x overlap, which we need as well as 
W0 to find W, must thus, indeed, have the form (29). 

If in one of the terms the motion were free, we 
must integrate this probability over D. over the in­
terval - 1h, 1/ 2, which would give 

P I 2 -1 1 =-tan -
Jt 2f 

and as r - 0 Eq. (27) would go over exactly into 
the Landau-Zener relation. 

The region of applicability of (19) and simul­
taneously the condition that one can use perturba-



RELAXATION IN NON-ADIABATIC TRANSITIONS 553 

tion theory, and thus the condition on W, has the 
form 

()) 

y,rro,~~ 2n WoP. (30) 

The range of temperatures for which (27) is cor­
rect is limited by conditions (23) and (24), and the 
factor multiplying the exponential in (27) satisfies 
by virtue of (30) the natural inequality 

WoP< 1. 

When the problem is stated as a stationary one, a 
relation of this type which has a clear physical 
meaning could not be obtained. 

The region which we have found where our re­
sult is applicable does not impose strict limita­
tions upon the relative magnitude of rand ~. so 
that W may contain maxima as function of T, E0, 

and y, which can be observed experimentally. 
Such a dependence on E0 is obtained in experi­
ments which give simultaneously the depths of 
traps and the electron capture cross-section (see, 
for instance, [ 61 ) and in a number of predissocia­
tion processes which restrict the thermal decom­
position of ionic crystals. 

In conclusion we must note that when there is 
no statistical damping in the medium and when 
there is only a dynamical decrease of the con·e-

lations of the q(t) at different times, we cannot 
evaluate W by the method given here, but, as was 
shown by Osherov[ 71 (x(t)x(O)) decreases all the 
same exponentially because of the reaction of the 
medium on the system and the corresponding W 
has a meaning although the line shape for the tran­
sition near the point of the quasi-intersectioo of 
the terms is not Lorentzian, as it was in (28). 
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