CRYSTAL STRUCTURE OF DYSPROSIUM AT 77-300°K

V. A. FINKEL' and V. V. VOROB'EV

Physico-technical Institute, Academy of Sciences, Ukrainian S.S.R.

Submitted to JETP editor April 28, 1966

J. Exptl. Theoret. Phys. (U.S.S.R.) 51, 786-790 (September, 1966)

The low-temperature x-ray diffraction method was used to investigate the crystal structure of dysprosium in the temperature range 77-300 °K. It was found that at 178 °K there was a negative λ -anomaly of the thermal expansion coefficients, associated with a phase transition of the second kind from helicoidal antiferromagnetism to paramagnetism. At 85 °K, a discontinuity in the values of the crystal lattice periods and atomic volume, as well as orthorhombic distortions in the hexagonal lattice, were observed, due to a first-order phase transition from antiferromagnetism.

DYSPROSIUM, like gadolinium and terbium investigated earlier,^[1,2] is one of the heavy rare-earth metals; at room temperature, it has the hcp lattice. The magnetic, electrical, and thermal properties of dysprosium at low temperatures have been investigated quite thoroughly.^[3] From the anomalies of the temperature dependences of a number of physical properties and from the results of neutrondiffraction investigations,^[4] it has been established that dysprosium is ferromagnetic below 85° K (T_C): the magnetic moments are ordered collinearly; at 85-178.5°K, a helicoidal antiferromagnetic ordering is observed, with the helicoidal axis along the sixfold symmetry axis [001] and the angle between magnetic moments in neighboring planes (β) almost linearly increasing with temperature from 26.5 to 43.2°; above 178.5°K (T_N), dysprosium is paramagnetic.

In several papers, it has been shown that an increase in pressure shifts T_N toward low temperatures $(dT_N/dp \approx -0.6 \text{ deg K/kbar}^{[5]})$, while the ferromagnetic-antiferromagnetic transition temperature depends nonmonotonically on pressure $(dT_C/dp = +1.4 \text{ deg K/kbar at } p < 7 \text{ kbar; } dT_C/dp$ = -0.8 deg K/kbar at p > 7 kbar^[6]). The results of x-ray diffraction investigations of dysprosium at low temperatures^[7,8] indicate an anomalous increase in the period c on cooling (at 85-178°K) and the presence of discontinuities in the values of the lattice constants at $T_{\mbox{C}}$ (85°K) (however, the change in the atomic volume at this point is zero, within the limits of the experimental error^[8]); orthorhombic distortions in the basal planes have of the hexagonal lattice have been found at temperatures below 85°K. The purpose of the present

investigation was to study with precision the crystal structure of dysprosium at 77-300 °K (in the ferro-, antiferro-, and paramagnetic states) using the x-ray diffraction method.

We investigated polycrystalline dysprosium of 99.2% purity. The low-temperature x-ray diffraction method did not differ basically from that described earlier.^[1, 2, 9]

We used the K_{α} radiation of chromium incident at large angles to obtain the diffraction peaks of the (104) and (203) planes of the hcp lattice of dysprosium. Below 85°K the diffraction peaks split into two components, which indicated an orthorhombic distortion of the crystal lattice. As mentioned in ^[2], the orthorhombic indexing of the components of the peaks and the subsequent calculation of the lattice parameters did not yield unambiguous results; to decide on a particular indexing scheme, it was necessary to compare the results obtained with the data of macroscopic measurements. In the present study, we were able to obtain good correlation between the x-ray diffraction data and the results of dilatometric measurements carried out on dysprosium single crystals,^[10] which supported our selection of the indexing scheme $[(h0l)_{h} \rightarrow (hhl)_{0} + (02hl)_{0}, \theta(hhl)_{0}$ $> \theta(02hl)_0$].¹⁾

From the temperature dependences of the interplanar distances, d(T), we calculated the values of the crystal lattice periods of dysprosium; the appropriate curves a(T), b(T), and c(T) are shown

¹⁾The subscripts "h" and "o" refer to the hexagonal and orthorhombic lattices, respectively; θ is the diffraction angle.

in Figs. 1 and 2. The same figures include the temperature dependences of the thermal expansion coefficients along the principal directions $\alpha_a(T)$, $\alpha_b(T)$, and $\alpha_c(T)$, obtained by graphical differentiation of the curves a(T), b(T), and c(T).

All the curves in Figs. 1 and 2 are complex; we can identify three regions, depending on the type of magnetic ordering:

 $178 \,^{\circ}\text{K} < T < 300 \,^{\circ}\text{K}$ —paramagnetic state. There are no anomalies in the temperature dependence of the hexagonal lattice periods;

85°K < T < 178°K – antiferromagnetic helicoidal ordering. There is an anomalous expansion of the hexagonal crystal lattice along the principal axis [001] on cooling (α_c < 0). Over this whole range of temperatures, the values of α_a and α_c decrease and a negative λ-anomaly appears at 178°K (T_N);

77° K < T < 85° K —ferromagnetic collinear ordering. When the temperature is lowered,to 85° K (T_C), the value of the period a decreases suddenly, while the periods b and c suddenly increase. The degree of the orthorhombic distortion in the basal planes of the crystal lattice of dysprosium is quite large $[\Delta(b/a) = (b/a)_{80} \circ_{\rm K} - \sqrt{3} = 0.0118]$; $a_{\rm b} > 0$, $\alpha_{\rm a}$ and $\alpha_{\rm c} < 0$.

FIG. 2.

It is evident that all the quantities characterizing the linear expansion of dysprosium (the lattice periods and the linear expansion coefficients) exhibit a strong anisotropy. Therefore, it is desirable to consider, as in the case of gadolinium and terbium,^[1,2] the temperature dependences of the atomic volume $[v_{at} = \frac{1}{4}(abc)]$ and of the volume expansion coefficient ($\alpha_{\rm V} = v_{\rm at}^{-1} dv_{\rm at}/dT = \alpha_{\rm a} + \alpha_{\rm b}$ + α_c) (Fig. 3). The v_{at}(T) curve has a discontinuity at $T_C (\Delta v_{at}/v_{at} \approx 0.2\%)$, a flat maximum at \approx 145°K, and a sharp minimum at $T_N.$ The volume expansion coefficient $\alpha_{\rm v}$ is negative in the ferromagnetic region; between 85 and 178°K, the value of $\alpha_{\rm v}$ decreases, passing through zero at 145 °K; at $178 \,^{\circ}$ K, a negative λ -anomaly is observed; in the paramagnetic region $\alpha_{\rm V} > 0$.

The results of our investigation of the crystal structure is dysprosium at low temperatures indicate that this structure is affected by changes in the magnetic structure. The negative λ -anomaly of the thermal coefficients (α_a , α_c , α_v) at T_N (178 °K) indicates that the transition from the helicoidal antiferromagnetic to the paramagnetic state is a phase transition of the second kind. The "sign" and magnitude of $\Delta \alpha_v$ agree, in accordance with the well-known equation of Landau's theory of phase transitions of the second kind^[11]

$$\Delta lpha_v = rac{\Delta c_p}{T_N v} rac{dT_N}{dp}$$
 ,

with the value of Δc_p , reported in ^[12], and with the value of dT_N/dp given in ^[5]. The transition from the ferromagnetic to the antiferromagnetic state at 85° K (T_C) has all the characteristics of a phase transition of the first kind: the atomic volume has a discontinuity (Fig. 3) and the crystal lattice symmetry changes. An estimate of the heat of transition in accordance with the Clapeyron-Clausius equation (using the volume discontinuity at 85°K found in the present study and the published value

of $dT_C/dP^{[6]}$) gives about 0.1 kcal/mole, which is comparable with the heat of polymorphic transitions.

It is worth noting the maximum in the $v_{at}(T)$ curve at ~ 145° K (Fig. 3), which corresponds to the beginning of the distortion of the helicoidal antiferromagnetic structure^[4] and to the appearance of anomalies of a number of physical properties.^[3,6] The same effect has been found for gadolinium at $\sim 200^{\circ} \text{K}^{[1]}$ and for terbium at ~ $210^{\circ} \text{K}^{[2]}$ in the ferromagnetic region. The cause of the anomalous temperature dependence of the atomic volume of rare-earth metals is not yet clear. It is possible that the appearance of maxima in the $v_{at}(T)$ curves, like changes in the magnetic structure and magnetic properties, is a consequence of changes in the Fermi surface topology, causing the appearance of singularities in the thermodynamic properties.^[13]

¹V. V. Vorob'ev, Yu. N. Smirnov, and V. A. Finkel', JETP **49**, 1774 (1965), Soviet Phys. JETP **22**, 1212 (1966).

²V. A. Finkel', Yu, N. Smirnov, and V. V. Vorob'ev, JETP **51**, 32 [1966], Soviet Phys. JETP **24**, 21 (1967).

³ K. P. Belov, R. Z. Levitin, and S. A. Nikitin, UFN 82, 449 (1964), Soviet Phys. Uspekhi 7, 179 (1964); K. P. Belov, M. A. Belyanchikova, R. Z. Levitin, and S. A. Nikitin, Redkozemel'nye ferroi antiferromagnetiki (Rare-earth Ferro- and Antiferromagnets), Nauka, 1965.

⁴ M. K. Wilkinson, W. C. Koehler, E. O. Wollan,

and J. W. Cable, J. Appl. Phys. Suppl. **31**, 48S (1961); W. C. Koehler, J. Appl. Phys. **36**, 1078 (1965).

⁵ P. Landry and R. Stevenson Can. J. Phys. **41**, 1273 (1963); P. C. Soners and S. Jura, Science **145**, 575 (1964); D. Bloch and P. Pauthenet, Proc. Intern. Conf. Magnetism held in Nottingham, 1964 publ. by Institute of Physics and Physical Society, 1965, p. 255; D. B. McWhan and A. L. Stevens, Phys. Rev. **139**, A628 (1965).

⁶ L. B. Robinson, S. I. Tan, and K. F. Sterrett, Phys. Rev. **141**, 548 (1966).

⁷J. R. Banister, S. Legvold, and F. H. Spedding, Phys. Rev. **94**, 1140 (1954).

⁸ F. J. Darnell and E. P. Moore, J. Appl. Phys. **34**, 1337 (1963); F. J. Darnell, Phys. Rev. **130**, 1825 (1963); **132**, 128 (1963).

⁹ Yu. N. Smirnov and V. A. Finkel', JETP 47, 84 (1964), Soviet Phys. JETP 20, 58 (1965); 49, 1077 (1965), Soviet Phys. JETP 22, 750 (1966).

¹⁰ A. E. Clark, R. M. Bozorth, and B. F. deSavage, Phys. Letters 5, 100 (1963); Phys. Rev. 138, A216 (1965).

¹¹ L. D. Landau and E. M. Lifshitz, Statisticheskaya fizika (Statistical Physics), Nauka, 1964.

¹² M. Griffel, R. E. Skochdopole, and F. H. Spedding, J. Chem. Phys. 25, 75 (1956).

¹³ I. M. Lifshitz, JETP **38**, 1569 (1960), Soviet Phys. JETP **11**, 1130 (1960); I. M. Lifshitz and M. I. Kaganov, UFN **78**, 411 (1962), Soviet Phys. Uspekhi **5**, 878 (1963).

Translated by A. Tybulewicz 92