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The giant oscillations of the coefficient of absorption of longitudinal ultrasound in single
crystal samples of bismuth were investigated at 1.4° K. The measurements of the oscillation 
periods were carried out at the frequencies of 220 and 300 Me along three principal crys
tallographic planes. The profiles and amplitudes of the absorption lines are in good agreement 
with the theoretical predictions. The experimental results obtained were compared with the 
results of investigations by other methods. 

THE interaction of the acoustical phonons with the 
conduction electrons in metals appears most 
clearly at low temperatures, when the mean free 
path of electrons l becomes longer than the phonon 
wavelength /\. In a magnetic field, the absorption 
coefficient of sound r exhibits oscillations whose 
nature depends on the range of fields applied and on 
temperature. In relatively weak fields, for which 
n Q < kT (27rn is Planck's constant, H is the cyclo
tron frequency, k is Boltzmann's constant, Tis the 
temperature), the geometrical resonance is ob
served whose measured period can be used to de
termine the extremal diameter of the Fermi sur
face. This resonance has already been investigated 
in bismuth by the present author. [!] In stronger 
magnetic fields t < n Q < kT (C is the chemical 
potential of the electron gas), quantum oscillations 
of the absorption coefficient of sound are observed 
and their amplitude becomes "giant" -considerably 
higher than the value of the absorption coefficient 
r 0 in the absence of a magnetic field-when the vec
tors K and Hare not perpendicular (K is the wave 
vector of the sound, H is the magnetic field vector). 

The giant oscillation effect was predicted theor-

etically by Gurevich, Skobov, and Firsov.[2J The 
effect has been detected experimentally in zinc, [3] 

bismuth,[4•5J and gallium.[6•7J The theory has been 
developed further in other papers. [8- 11 ] 

According to the theory, the oscillation period 
~H - 1 should be constant when considered as a func
tion of the reciprocal field and should be governed 
by the characteristic parameters of the Fermi 
surface: 

MJ-1 = 2neh I cS (~, PHD), 

where the quantity PHo is related to the relative 
positions of the vectors K and H: 

In these formulas, c is the velocity of light; s is 

(1) 

( 2) 

the velocity of sound; S is the area of the section of 
the Fermi surface cut by the plane PHo• normal to 
the vector H; e is the electron charge; mH is the 
''longitudinal'' electron mass. 

Thus, in principle, by varying the orientation of 
the vectors K and H, we can measure the area of 
any section of the Fermi surface and not just the 
extremal sections, as is the case in the de Haas-
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van Alphen effect. However, in practice, it is diffi
cult to make use of this property since, because of 
the low value of the velocity of sound, the quantity 
PHo remains close to zero over a considerable 
range of the values of the angle J between K and H. 

This does not reduce the interest in the investi
gation of the giant oscillations. Because of the 
large amplitude, the method is very sensitive, and 
in some cases we can obtain additional information 
about the electron spectrum of the investigated 
metal by measuring directly the values of the 
electron-phonon coupling constant Aik· 

The present investigation is a continuation of 
studies of the electron spectrum of bismuth. It 
seemed of interest to compare the experimental 
data obtained by the geometrical resonance method 
and those found from the giant oscillations, as well 
as to investigate the features of the anisotropy of 
the absorption of sound in various crystallographic 
planes. 

MEASUREMENT METHOD 

We used a pulse method[12l to measure the 
periods and amplitudes of the giant oscillations. 
The high-frequency sound was excited by generat
ing harmonics in piezoelectric X-cut quartz plates 
whose resonance frequency was 2o-·Mc. The main 
results were obtained at the frequency of 220 Me, 
but some measurements were carried out under 
continuous-operation conditions at the frequency 
v = 300 Me employing magnetic field modulation 
and synchronous detection. 

A cryostat, in which the inclination of the mag
netic field with respect to the wave vector direction 
could be varied, is shown in Fig. 1. 

The samples were cut by electric-spark machin
ing from a large single crystal grown from the 
melt in a Pyrex ampoule; they were in the form of 
cubes, the normals to the cube faces being parallel 
to the crystal axes. The dimensions of a sample 
were 5 x 5 x 5 mm. Fine abrasives on a grinding 
plate were used to make the sample faces strictly 
plane parallel. The method of locating a sample, 
stuck to a special brass piston ring, can be seen 
from Fig. 1. The lower part of the crystal holder 
had special apertures for the exact alignment of 
the crystal, with respect to the axis of the instru
ment, by means of an optical goniometer. 

In this instrument, the wave vector of the sound 
lay in a horizontal plane, which included the vector 
of the constant field H established by means of an 
electromagnet on a rotating base. Much attention 
was paid to reducing the dimensions of the working 
part of the crystal holder in order to obtain the 
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FIG. 1. Cryostat and crystal holder for the investigation of 
the absorption of sound in an inclined magnetic field: 1) coax
ial lines; 2) flexible coaxial couplings; 3) guide rod; 4) split 
spring coupling; 6) electrode; 7) piezoelectric quartz trans
ducer; 8) sample; 9) aperture for alignment of a crystal by 
means of an optical goniometer; 10) spring contacts. 

highest possible magnetic field intensities. The 
internal diameter of the nozzle of the helium Dewar 
flask used was 15.5 mm, which made it possible to 
obtain a maximum magnetic field intensity of 
12 500 Oe. 

The oscillations, recorded as a function of the 
reciprocal of the magnetic field, were subjected to 
the following analysis. The measurement of the 
periods of the giant oscillations was made easier 
by the fact that the absorption lines, particularly in 
strong magnetic fields, were much narrower than 
the separations between the lines. Instead of an 
analysis of the beats, used in such cases, it was 
frequently sufficient to measure simply the approp
riate separations between the absorption peaks in 
the reciprocal field. 

The measurements were carried out on two 
samples: a main sample and a control sample. 
Since the results of the control measurements were 
practically identical with those obtained for the 
main sample, only the results of the measurements 
for one sample are given in the present paper. 

EXPERIMENTAL RESULTS 

1. Oscillation amplitude. For convenience, we 
shall introduce a system of rectangular coordinates 
xyz, with x along a binary axis, y along a bisector 
axis, and z along a trigonal axis of a crystal. 

Figure 2 shows a recording of the spectrum of 
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8785437 
FIG. 2. Giant oscillations in the binary axes plane, re

corded as a function of the reciprocal magnetic field. The or
dinate gives the absorption coefficient in arbitrary units. 8 is 
the angle between the wave vector of sound K and the magnetic 
field vector H; T = 1.4°K; v = 220 l\1c; K vector parallel to the 
binary axis, 

the giant oscillations for sound propagated along 
the x axis with the magnetic field lying in the xy 
plane (8 is the angle between K and H; in this case, 
it was the angle between the x axis and the vector 
H). 

A characteristic feature of the giant oscillations 
was the presence of narrow absorption lines against 
a background of wide diffuse minima, as well as a 
strong angular dependence of the amplitude near 
J "'=" 90°, Figure 3 shows the angular dependence of 
the amplitude (in arbitrary units) for three orien
tations of the vector K. A minimum was observed 
at J = 90° but the amplitude did not decrease to zero 
in all cases. The same behavior of the oscillations 
was reported in[ 5J. l> 

Figure 4 shows the dependence of the oscillation 
amplitude on the magnetic field when the vectors 
K and H were parallel to the x axis. According to 
the theory.E2 •9] the oscillation amplitude should de
pend linearly on the magnetic field 

fm = f 0<i>ehH /8m•ckT. (3) 

l)The earlier paper [']gave figures with recordings of the 
geometrical and quantum oscillations of the absorption coeffi
cient of sound in bismuth for K 1 H (Fig. 3), The high ampli
tude of the quantum oscillations was due to the high sensitiv
ity of the apparatus under continuous-radiation conditions, 
with field modulation and synchronous detection, and also 
possibly due to small accidental deviations of the vectors 
K and II from normal orientation with respect to each other 
(for the geometrical resonance, such deviations are unimpor
tant). 
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FIG. 3. Angular dependence of the amplitude of oscilla
tions near 8 = 90° ( J is the angle between K and H). The or
dinate gives the amplitude in arbitrary units; T = 1.4°K; v = 
220 l\1c, f'... - K II x, II close to the y axis; 0 - K II y, II close 
to the x axis; X - K II y, H close to the z axis. 

In this formula, di) is the electronic absorption 
coefficient in the absence of a field, representing 
that group of carriers which contributes to the os
cillations (no allowance for the spin degeneracy). 

The formula (3) allows us to estimate the value 
of di) using for this purpose the slope of dr/dH of 
the experimental straight line in Fig. 4. Two elec
tron ellipsoids contributed to the oscillatory curve 
for H II x and, consequently, using the known values 
of the effective mass m* = 0.01m0, we obtained the 
value of r~u at the longitudinal sound frequency 
v = 220 Me: r~j) = 0.135 cm- 1 per ellipsoid. 

To determine the local value of the electron
phonon interaction constant, we can use the formula 
(28) fromE 9 l: 

m2 J A;kuik 12 
fo= , 

2:npsh3 J u 12 1 K I 
(4) 

where p is the density of the crystal, uik is the 
deformation tensor, m 2 = m*mH is the product of 
the cyclotron mass and the "longitudinal" mass 
(1/mH = o2E/opH), u is the displacement vector of 
the acoustic wave. After carrying out the neces
sary calculations, we found !Axxl = 3.31 eV per 
ellipsoid. 

2. Oscillation Period. The Shoenberg-Brandt 
model of the electron spectrum of bismuth, usually 
employed in the calculations, consists of three 
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FIG. 4. Dependence of the oscillation amplitude on the 
magnetic field for K II II II x, v = 220 Me, T = l.4°K. 
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electron ellipsoids lying symmetrically with res
pect to a trigonal axis. The period of the giant 
oscillations can be found easily within the frame
work of this model. 

We shall now write the area of the section of an 
ellipsoid by a plane Pn• normal to the unit vector 
n = H//HI: 

( det m )''• [ Pn2 
S(e,, Pu) = 21tmoet -- · 1-2 ( ) 

nmn moet nmn 1 ( 5) 

where m is the mass tensor. The value of Pn at 
which the oscillations are observed is found by as
suming that the projection, onto the wave vector K, 
of the average electron-drift velocity along the field 
is equal to the velocity of sound s: 

co~ tt aS (ct. Pn) 
V.K=-- =S. 

21tm* 8pn 
( 6) 

Combining the obtained value with Eqs. ( 5) and ( 1), 
we find 

11H 1=-- --- · 1- . _ eli ( nmn )''' [ m0s2 ( nmn) J-1 

moCef det m 2et cos2 tt 
( 7) 

The results of the measurements of the oscilla
tion periods along the investigated directions of 
the vector K are given below. 

A. The vector K parallel to the x axis. Figure 5 
shows the stereographic projection of the planes 
(dashed curves) in which the magnetic field vector 
was rotated and in which the giant oscillations were 
investigated. A detailed analysis of the oscillo
grams was carried out only for the principal crys
tallographic planes. For the planes inclined at 6, 
30, and 60° to the basal plane, we determined the 
positions of the points of coincidence of the oscilla
tion periods associated with different ellipsoids. 
The positions of the lines with equal periods, which 
could be found from Eq. (7), depended only on the 

FIG. 5. Stereographic projection of equal-period lines (con
tinuous curves); C2 points of emergence of the binary axes. 
Dashed curves indicate projections of the planes in which the 
positions of the points of coincidence of the periods were 
measured for K II C,. 
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FIG. 6. Angular dependence of the oscillation periods in 
the binary axes plane. Continuous curves 1, 2, 3 give calcu
lated values for the central cross sections; dashed curves 
1', 2', and 3' were obtained from Eq. (7) allowing for the dif
ference between the measured and central cross sections. The 
parameters used in the calculation were taken from ['], K II x, 
angle measured from the x axis. 

angle of inclination ~ of the principal axis of an 
ellipsoid to the basal plane: 

sin(q:>- 60°) = tan 2s I tan 8. ( 8) 

Here, q; and e are the spherical coordinates of the 
vector n. The thick curves in Fig. 5 were plotted 
using Eq. (8) and assuming that ~ = 6°. The experi
mental points coincided quite well with these curves. 
Examples of oscillations in the binary axes plane 
are given in Fig. 2. A characteristic feature of the 
oscillograms for K II x was the presence of compon
ents of three electron ellipsoids. 
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FIG. 7, Angular dependence of the oscillation periods in 
the plane of the trigonal and binary axes. Continuous curves 
1, 2, 3 were calculated for the central cross sections; dashed 
curves 2' and 3' were plotted using Eq. (7) and allowing for 
the difference between the measured and central cross sec
tions. K II z, angle measured from the z axis. 
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An analysis of the periods of the beats in the xy 
plane is given in Fig. 6. 

Using the parameters of the spectrum given in!t] 
and Eq. (7), we can calculate the periods of the 
giant oscillations as a function of the magnetic field 
direction. Curves 1-1', 2-2', and 3-3' give the 
results of the calculation for the binary axes plane. 
The experimental values of the periods are in good 
agreement with the calculated values in the angular 
range 0° < ,J < 80°. For ,J > 80°, there is a notice
able divergence from the calculated values. 

B. The vector K parallel to the z axis. The re
sults of the measurements of the oscillation periods 
in the zx plane are given in Fig. 7. For the longi
tudinal sound propagated along the z axis, there is 
again an interaction with three electron ellipsoids, 
but the amplitude of the oscillations depends 
strongly on J: the ellipsoids 1, in the range 
35° < ,J < 90°, and 2, in the range 0° < ,J < 35° make 
negligibly small contributions. 

Curves 1, 2-2', 3-3' in Fig. 7 were plotted 
using Eq. (7) and the parameters given in[t]. In the 
angular range ,J > 80° in the zx plane, there is again 
a considerable divergence between the calculated 
and measured values of the oscillation periods. 

C. The vector K parallel to the y axis. Exam
ples of recordings of the giant oscillation spectrum 
for K II y in the binary-axes plane are given in Fig. 
s. The interaction between the longitudinal sound 
wave having its wave vector parallel to the bisec
tor axis and electrons has an interesting feature: 

--~8--~7--~6~--5~-4~-3~-2~-t 

FIG. 8. Giant oscillations in the binary axes plane for 
K II y. T = 1.4°K, ,J is the angle between K and H, v =220Mc. 
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FIG. 9. Angular dependence of the oscillation period in 
the binary axes plane for K II y, The angle is measured from 
the y axis. 

its magnitude is considerably greater for that 
electron ellipsoid which is elongated along the 
axis of propagation of the sound wave. The sound 
hardly "notices" other carriers and the oscillation 
period is governed only by this ellipsoid for any 
direction of the magnetic field. 

The results of the measurements of the periods 
in the xy and yz planes are given in Figs. 9 and 10. 
For any orientation of H, there was, in practice, 
only one oscillating component, with the exception 
of the yz plane for IJI > 60°, for which there was 
one more oscillation period, evidently associated 
with holes. 

In the binary axes plane, the periods coincided, 
within the limits of the error, irrespective of 
whether the vector K is directed along the x axis 
or the y axis. In the yz plane, the electron oscilla
tions in the range of large angles were of greatest 
interest. In this range of angles, the de Haas-van 
Alphen oscillations disappeared even at very low 
temperatures. [t3l The amplitude of the giant os-

1.0 

FIG. 10. Angular dependence of the oscillation period in 
the yz plane for K II y. Continuous curves 1, 2, 3 give the 
calculated values of the periods for the central cross sections 
of the electron ellipsoids. The angle was measured from the 
y axis. 6- electron oscillations; o -oscillations evidently 
associated with the hole surface. 

../ 
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10 

FIG. 11. Recording of the derivative of the absorption 
coefficient as a function of the reciprocal magnetic field for 
K II y and J ~ 6° in the yz plane. T = 1.4°K, v ~ 300 Me. 

cillations in this region was also much smaller and 
the oscillations disappeared in the range 76° < J 
< 82°. The minimum of the period was evidently 
reached near J = 84 a and this made it possible to 
measure the area of the ''average'' cross section 
of the electron ellipsoid. The measurements in the 
yz axes plane were carried out using a continuously 
operating spectrometer at the sonic frequency 
v = 300 Me. Under these conditions, the sensitivity 
of the apparatus was considerably higher. 

The theory[ 14 •15] admits the possibility of the 
existence of a "constriction" in the electron sur
face detectable from the beats of the periods for H 
near the y axis (near ~H~ax in the yz plane). 

Using the maximum sensitivity of the apparatus, 
we were able to obtain about 35 absorption lines 
(Fig. 11) for this direction of the magnetic field. 
In a field of about 700 Oe, we indeed observed a 
beat "waist" but a detailed investigation showed 
that the position of the "waist" shifted with the 
frequency of the sound. The nature of this effect 
was, therefore, not associated with the shape of the 
Fermi surface. 

DISCUSSION OF RESULTS 

Gurevich, Skobov, and Firsov [2•9] obtained the 
condition for the existence of giant oscillations: 
(Kl) 2 » t/1Hl. This relationship was satisfied by 
the investigated bismuth samples at temperatures 
T "" 1. 5° K and sonic frequency v ""200 Me, in mag
netic fields H > 20 Oe. The oscillation amplitudes 
and the absorption line profiles were in sufficiently 
good agreement with the experimental data. The 
present author [4] has carried out a comparison of 
the calculated and experimentally recorded oscilla
tion curves for bismuth. In spite of the fact that the 
calculation was carried out for a spherical model 
of the Fermi surface and the bismuth spectrum was 

in fact far removed from such an approximation, 
the calculated and experimental curves were prac
tically identical: the nature of the energy spectrum 
did not greatly affect the line profile. 

A strong dependence of the oscillation amplitude 
on the angle was found experimentally near J "" 90°. 
The quantum oscillations for J = 90° (i.e., K 1 H) 
were of low amplitude. Under such conditions, elec
trons can absorb sound only during their collisions 
with scatterers and the oscillation amplitude should 
be 1/Kl times smaller than the giant amplitude. 
A non-zero oscillation amplitude for K 1 H was 
also reported by Toxen and Tansal [5] but, due to 
the smaller value of Kl (the frequency of sound v 
used by them was 40 Me [5]), their ratio of the am
plitudes was, as expected, smaller. However, the 
problem of the quantitative relationship between 
r(H1) and r(HII) still requires more rigorous 
theoretical discussion. 

The value obtained for the electron-phonon 
interaction constant IAxxl agreed, within the limits 
of the experimental error, with the values of the 
deformation potential E 1 = -2.4 eV and E 2 = +2.5 eV, 
measured by the static piezoresistance method.[JS] 
The purpose of the present study was not to deter
mine the total vector IAikl· We can point out here 
only that the method of measuring the electron
phonon interaction constants with the help of the 
giant oscillations is very promising because it is 
known immediately with which group of carriers 
the values obtained are associated (unfortunately, 
the sign of Aik cannot be determined). 

Thus, bearing in mind the results of the present 
investigation, we may assume that the amplitude 
characteristics of the giant oscillations are in 
sufficiently good agreement with the theoretical 
predictions, but a quantitative comparison with the 
theory would require an accurate determination of 
r 0• Toxen and Tansal [5] obtained anomalous values 
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S,·lO" j -s,.to" Sa·!O" 

L31±0.1 13.1±1.0 18±1.5 

1.28±0.065 13.3±0.65 19±2 

1.34±0.05 14±1.5 19.5±1 

1.19 

of the ratio r 1 r 0 because of an inaccurate estimate 
of r 0• 

It is very difficult to measure independently r 0 

of a metal which does not go over to the super
conducting state, because the experiment always 
gives the sum r = LToi + LTz of the electronic and 
lattice absorption coefficients. 

The oscillation periods near the angles 80° < .rJ 

~-

< 90° in the xy and zx planes differed considerably 
from those calculated in accordance with the quad
ratic model of the spectrum. The divergences were 
not large but they were greater than the experi
mental error. Since the oscillations in this angular 
range remained of the giant type (we can, in general, 
assume that for some reason their nature may 
change and they may go over to the de Haas-van 
Alphen type, i.e., they may become oscillations of 
the central cross section), then, because the ex
periments carried out indicated the absence of a 
''saddle point'' or a ''constriction'' of the electron 
surface (the areas Smax and Smin differ, in the 
extreme case, by less than 1/30), it was necessary 
to assume the existence of a longer cylindrical part 
than was the case for an ellipsoid. 

This assumption was in qualitative agreement 
with the conclusions of Edel'man and Kha1kinl 17 l, 
deduced from an investigation of the cyclotron 
resonance at limiting points although deviations 
from the ellipsoidal shape were very small. We 
noted that the cyclotron masses were much more 
''sensitive'' to the nature of the electron spectrum 
E(p) than to the shape of the constant-energy sur
face and, therefore, the difference between the 
''extremal'' and ''limiting'' points amounting to 
35% in l17 l was fully compatible with the very slight 
departure from the ellipsoidal shape. 

By way of illustration, the table below gives the 
results of a comparison of the measured values of 
the areas of the principal ellipsoid cross sections 
S1, S2, and S3 (the dimensions of these areas are 
g2 • cm2 · sec-1) with those calculated inl 1l from the 
ellipsoidal model. 

The angle of inclination of the ellipsoid axis to 
the basal plane was close to 6° and this value was 
in good agreement with the results for an arbitrary 

deg I Reference Remarks 

6 (1] Ellipsoidal model 
calculations 

6 Present study s3 extrapolated 

ps,lS] s2 extrapolated 

4 [19] 

direction of the vector H with respect to the crys
tal axes and not only with the results for the prin
cipal planes ( cf. Fig. 5). The largest difference 
between the two sets of data given in the table was 
found for the cross section S3 although even in this 
case the divergence was within the limits of the 
experimental error. 

The samples used in the investigations of the 
giant and geometrical oscillations were cut from 
one large single crystal and, therefore, they had 
the same amounts of impurities. The good agree
ment between the results of the investigations by 
these two methods was, to a considerable degree, 
due to this factor. The different values of the areas 
of the cross sections of the Fermi surface of bis
muth, reported in a number of papers,l 13 • 19 l were 
probably due to a change in the Fermi level under 
the influence of impurities. 

The oscillations associated with the hole surface 
were observed in a limited range of angles and this 
was most likely due to the relatively low value of 
the ratio H/T reached in our experiments. The 
measured value of the minimum area of the hole
surface cross section was S1d = (6.6 ± 0.3) 
x 10-42 g2 • cm2 • sec-2• The value calculated inl1l 
was S1d = (6.0 ± 0.5) x 10-42 g2 • cm2 • sec-2• These 
values were equal within the limits of the experi
mental error. 

The spin splitting of the Landau levels was not 
observed in the present study. Investigations of 
this splitting, using stronger magnetic fields, would 
undoubtedly be of interest because of the selective 
sensitivity of sound to different groups of carriers. 

ln conclusion, the author expresses his gratitude 
to E. A. Kaner, V. G. Skobov, and V. L. Gurevich, 
who took part in the discussion of this investigation, 
and to L. Ya. Matsakov for his help in the measure
ments. 
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