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A kinetic equation describing four-plasmon processes in a plasma without a magnetic field is 
derived and it is shown that it has an exact solution. The solution may be interpreted as the 
turbulence spectrum in the universal equilibrium region. It is demonstrated that the turbulence 
is of a local-isotropic nature. 

1, INTRODUCTION 

As is well known, two types of weak plasma tur
bulence are possible. [ 1' 2 J The first is due to the 
scattering of waves by the plasma particles; it was 
investigated in a number of papers. [ 1• 2] The sec
ond is due to processes of decay, coalescence, and 
neutral scattering of waves without energy ex
change between the particles and the waves. We 
shall show that weak turbulence of this type has 
properties analogous in many respects to those of 
ordinary hydrodynamic turbulence. Namely, re
gions of wave numbers can be separated ink-space, 
such that the turbulence has a universal power-law 
spectrum determined only by the magnitude of the 
energy flux in the region of large k. 

In hydrodynamic turbulence, the proof of this 
fact is based on considerations of dimensionality 
and on the hypothesis of local turbulence, that is, 
on the assumption that only spatial scales of one 
order of magnitude interact with one another. [ 3 • 41 

In spite of the numerous attempts to prove this 
statement, it has remained heuristic so far. The 
difficulty lies in the fact that it is impossible to 
construct a closed system of equations with which 
to describe hydrodynamic turbulence. Much more 
progress can be made in the theory of weak turbu
lence because weak turbulence is described by the 
kinetic equation for waves. 

We shall consider one of the simplest cases of 
weak turbulence-a system of interacting Langmuir 
plasmons in an isothermal plasma without a mag
netic field, when the main plasmon interaction is 
their scattering by one another. Since this process 
does not depend on the detailed structure of the 
electron-velocity distribution function, we can use 
the hydrodynamic equations to describe the plas
ma. Starting from these equations, we obtain a 
kinetic equation for the plasmons. An analysis of 
the kinetic equation shows that it has an exact solu
tion, nk = const . k - 13 / 3, which can be interpreted 

as the spectrum in the region of universal equilib
tium. The same solution is obtained also from di
mensionality considerations, with const ~ p113, 

where p is the energy flux if k is large. It is si
multaneously possible to prove the local isotropy 
of the turbulence. 

Analogous results were obtained earlier for one 
model problem[ 51 and for weak turbulence of waves 
on the surface of a liquid. [ 61 

2. KINETIC EQUATION FOR PLASMONS 

We start with the system of hydrodynamic equa
tions for an electronic liquid in the presence of a 
positively-charged background 

ov e 
+(v\7)v= -3w1}rr}\7n--v~:p, 

dt tn 

an 1 at+ div (nv) = o, 
.1tp = 4n:e (n- no). (1) 

Here n and v are respectively the density and 
velocity of the electrons, n0 the unperturbed den
sity, <p the electrostatic potential, and wp and rn 
the Langmuir frequency and the Debye radius of 
the plasma. 

Equations (1) are suitable for the description of 
motions with small gradients ( Y'n/n « 1/rn). Un
der these assumptions the electrostatic pressure 
is much larger than the gas-kinetic pressure. 
Therefore the term with the gas-kinetic pressure 
is linearized in terms of n. 

We take the Fourier transform with respect to 
the coordinates in the normalization volume V and 
go over to new variables ak by means of the for
mulas 

1 ( Wk )'h k • v = -~-, ~ -.-- -(ah- a_k)ei(krJ, 
V;, .::..J 2mno k 

" 
1 ~ ( n0 )'f, . On= n- no=-,, Lc --- k(a, + a-k)ei(krJ. 

Y 1' " 2mw" 
(2) 
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Here wk = wp +% wp(krn) 2 is the law of disper
sion of the Langmuir waves. We shall assume 
throughout that krn « 1. 

In terms of the variables ak, Eqs. (1) take the 
form 

i);;- + iUlhah = -i ~' rkh'k" (ah'ak"b (k, k' + k") 
k', k" 

When krn « 1, the matrix element r takes the 
form 

rhk,k, = (Ulp I 8Vnom)'I•Qitk,h, 

= (ktk2) k + (kk. t) ~ + (kk2) kt . 
Qilhtk. k 1 k 1 1 kt '2 /t 't /t:lt2 

Equation (3) can be obtained in variational form 

(4) 

fJa" I at= -ifJH I aak•, 

where the Hamiltonian H is 

(5) 

H = ~ Ul~<aka,; + ~ ~ r""'".(ahah,ak, 
k klk2 

+ ah*al<,·a,,,·)6(k,- kt- k2)+ ~ rkh,k,(an*ah,ah, 
k~ok2 

In the normalization chosen by us, H coincides 
with the total energy of the plasma, given by the 
formula 

Substituting f in the right side of (3) and consider
ing only the terms that do not contain rapid expo
nentials, we obtain for Ak 

Here 

~ S~tlttit,lt,A~t,·Ak,A~t, · 
kt.kz,k3 

S~t, 1t,, "'· "' = 2Q~t+k,, 1t, k,Q1t,+1t,, it,, It, 

- 1/aQ-k-lt, k, k,Q-It,-h,, k,, It, 

- 2Qk, It,, k-k,Qk,, It,, lt,-lt, - 2Qit, It,, k-k,Qh,, k,,k,-lt, 

(7) 

(8) 

-2Qk, k,, k,-kQk,, It,, k,-lt, - 2Qk, It,, lt,-kQk,, k,, lt,-lt,· (9) 

The function Sk k k k satisfies the symmetry 
, 1> 2• 3 

conditions 

For (8) to be valid it is necessary to satisfy the 
condition f « A, which leads to the requirement 
that the nonlinearity be small, 6n/n « 1. Equa
tion (8) is perfectly analogous to the Heisenberg 
equations of motion for a Bose gas, with Ak and 
Ak the classical analogs of the quantum annihila
tion and creation operators. Equation (8) conserves 
the energy, the momentum, and the total number of 
plasmons 

Corresponding to (7) is the Hamiltonian 

H = ~ Q~tAnA~t* + 16~Vno ~ S~t~t,lt,lt,Ak*A",•A~t,A~t, 
Let us simplify (3). To this end we represent ak " h,k,k,,k, 

in the form 

(6) 

Here Ak is a slowly varying function with a char
acteristic variation time much larger than 1/wp; 
the value of f changes appreciably within a time on 
the order of 1/ w p· We substitute (6) in (3) and 
eliminate f. To this end we retain in the right side 
only the terms that are quadratic in A, and then, 
using the slowness of the variation of A, we inte
grate the obtained equation with respect to the time. 
In addition, we neglect in the integration the ther
mal corrections to the dispersion of w k· We ob
tain 

We now proceed to a statistical description of 
the system. We assume that the oscillation phases 
corresponding to different k are random, and 
change to a new variable-the particle number 
density 

n~t = <AkA,:>. 

The angle brackets denote averaging. For nk we 
obtain the kinetic equation 

X (nh,nk,nlt, + nhnk,nk,- nknk,nk,- nknk,nlt,) 

X 6 (Qit + Qk, - Qlt,- Qk,) + yknk. (11) 

The kinetic equation describes plasmon collisions. 
In addition, there exists also a collective plasmon 
interaction, which leads to a shift in the plasmon 
frequency. The frequency shift is given by 
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(12) 

Equation (11) is valid if t.!Jk « Qk and contains 
an additional term 'Yk nk, which describes the in
teraction of the plasmons with the plasma electrons. 
This term, which is calculated in [ 1J, conserves 
the number of plasmons, but leads to a loss of en
ergy by the plasmons. 

sk, kto k2, k3 is a homogeneous function of sec
ond degree. Let us investigate its behavior when 
one of the arguments tends to zero. Let, this argu
ment, for example, be k. Calculations show that 
although some of the terms of (8) remain finite as 
k- 0, the principal terms cancel out, and the func
tion sk, kt. k2, k3 has an asymptotic behavior 

Sk,k,,h,,k, ~ kW(k~, kz, k 3 ) as k-+0. (13) 

W(kt. k2, k3) is a homogeneous function of first 
degree. 

A similar property is possessed by the function 
Sk k k k . If one of its arguments is much lar-

' 1t ' 1 
ger than the other, its asymptotic value is 

Sk, "'· k, "' ~ 16( (kk1) - kkl]. 

We note also that in the one-dimensional case, 
when all the vectors k, k1, k2 , and k3 are parallel 
and have the same direction, the function 
sk, k1, kz, k3 vanishes identically. 

3. DIMENSIONAL ANALYSIS 

Let the normalization volume V tend to infinity, 
and let us multiply the variable nk by (27r) 3/V; the 
new variable, which now has the meaning of the 
particle-number density in six-dimensional phase 
space (k, r), will be denoted by the same letter. 
We replace summation by integration. The equa
tions take the form 

fJnk 1 n 1 (' 2 Tt= (Zn) 6 32 m2n02 J ISk,k,,k,,k,l<'>(k+kl-kz-ka) 

XeS (Qk + !Jk,- Qk,- Qk,)l (nk,nk,nk, + nknk,nk, 

(14) 

and the condition for its applicability is 

4 (2 )13 ~Sk,k,k,k,nk,dk!~Qh. (15) 
n mno · 

The principal term of the kinetic equation is of the 
order of 

(lcrv) 2 (ft/nT)2nk, where Et ~ w0 ~ ndl~ 

is the oscillation energy density, and the order of 
Yknk is[ 1 J 

It follows therefore that scattering of plasmons by 
electrons can be neglected when k « ks, where 
ks = Et /runT. 

In this region, equation (14) has three integrals 
of motion, viz., momentum P = ]kn0k, particle 
number N = J nkdk, and the integral of motion 
T = J Qknkdk, which by analogy with a Bose gas 
will be called the plasmon kinetic energy. 

We now consider the evolution of a wave packet 
with average wave number k. The packet is as
sumed to be essentially multidimensional, but not 
necessarily isotropic. Let the average wave num
ber of the packet be ko « ks. Then the entire phase 
space breaks up into three regions-that containing 
the energy (k ~ ko), the scattering region (k ~ ks), 
and the intermediate region (ko < k < ks). Assume 
that at the initial instant of time the wave packet 
has filled the energy-containing region. Under the 
influence of the collisions, some of the plasmons 
go to the intermediate region. Owing to the parti
cle-number and kinetic-energy conservation laws, 
the rms wave number remains unchanged, so that 
the entire packet as a whole drifts to the region of 
small k. The probability that the plasmon will fall 
into the scattering region is low, and therefore the 
particle-number spectrum falls off quite steeply in 
the region of large k. Plasmons falling in the scat
tering region lose their kinetic energy and return 
to the region of small k, but their contribution to 
the total particle-number balance is insignificant. 

Thus, a flux of plasmon kinetic energy is estab
lished in the region of large k, along with a sys
tematic drift of the wave packet as a whole towards 
smaller k. 

Further, in analogy with hydrodynamic turbu
lence, [ 3• 4J we advance the hypothesis that the tur
bulence spectrum in the region of the intermediate 
wave numbers is determined by a single quantity 
p-the flux of plasmon kinetic energy in the region 
of large k, so that the intermediate region is a re
gion of universal equilibrium. 

The flux can be readily expressed in terms of 
the characteristics of the packet in the energy
containing region. Let nko be the characteristic 
density of the particles in the energy-containing 
region. Then from (14) we have 

~ onk 1 
P = Qk-dk ~ - 2- 2-ko4 (nk,ko3 ) 3• at m no 

(16) 

On the other hand, in the intermediate region the 
flux should be expressed in terms of nk and k, 
from which we get 

Hence 
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Expression (16) is perfectly analogous to the for
mula for the Kolmogorov spectrum in ordinary tur
bulence, iek ~ E 2 / 3k- 11 13, where E is the energy 
flux in the region of large k. 

From (15) we can estimate the rate of motion of 
wave packet in the region of small k. Bearing in 
mind that the total number of particles is con
served, we can obtain 

d p ·[g)2 
-1 (rvk0 ) 2 ::=::::---:-::::::: Wp (-T (rvko)". 
rt A n 

Hence (rnko) 2 ~T/t, where T- 1 ~ wp(cW/nT) 2• The 
rms wave number can be treated as the plasmon
gas temperature. We see from the foregoing that 
the collisions cause cooling of the plasmon gas, 
the temperature decreasing in proportion to 1/t. 

The number of particles is conserved in this 
case, so that no appreciable dissipation of the 
Langmuir-oscillation energy takes place. This 
dissipation can occur only as a result of Coulomb 
collisions. 

4. EXACT SOLUTION OF THE KINETIC 
EQUATION 

We now show that the obtained spectral density 
ilk = const · k- 13 / 3 causes the collision term of the 
kinetic equation to vanish: 

\ 1 s""·"-h' 126 (k+ k,- k2- k2) o (Qk + Qh,- Qh,- Q",) 
X (nk/L,,,nk, + nknk_nk,- nknk,nk,- nknkpk,) 

(18) 

We assume that nk depends only on the modulus 
of k and use the relation 

o (k + k, - kz - k3) 

= (Z~)3~ exp{i("-,k+k1 -k2 -k3)}d1-,. 

We multiply (18) by k2 and integrate over the an
gles ink-space. We obtain 

~ V~t,h""'·"'o ( k 2 + k,2 - kz2 - k32 ) (n~</1~<P~<, 
+ nhnknh,- nhnk,nk, - nknk/1~t,) dk1 dk2 dk3 = 0. 

Here 

Vn,h,.l<-,h, = k2k,2kz2/c32 \ exp {i (1-,, k + k1- kz- k3)} 

x 1 s" "··"""' l 2dQdQ,~iQ2dQ3, (19) 

Qi is the solid-angle element in the ki space. 
It is obvious that vk, kto k2, k3 is a homogeneous 

function of ninth degree. It has the same symmetry 
properties as the function sk k k k . 

' 1o 2• 3 
We now change over to the variable w = k2 and 

multiply (18) by dk/dw = 1/~ to conserve the 
symmetry of the kernel. We obtain 

(20) 

Here 

T(w, W!, Wz, w3) = (wul1W2W3) 'I,VCjlw, )'w,, fwz, )'~). 

T satisfies the symmetry relations (9) and is a 
homogeneous function of the order 5/z. Integration 
is over the shaded region in the w', w" plane (see 
the figure). We seek the solution in the form 
nw = cw8• We break up the region of integration in
to four regions (I, II, III, IV) and by change of var
iable we map each of the regions (II, III, IV) on 
region I. 

The formulas for the change of variables are as 
follows: for region II 

W11W 
w'~----

w' + W 11 - w' 

for region III 

w'w 
w" -4-- -~---·· 

w'+w"-u)' 

(w' + w"- w)w, 
w'~ , 

wz 
w"~-· 

II' l•l 

for region IV 

wz 
w'~' , w 

w II ' 

(w'+w11 -w)w wll ~ _:_____: ___ _:___ 
w' 

(21) 

Let us consider the transformation of the inte
grand, using region II as an example. We note that 
under transformation (21), w' + w"- w goes over 
into w2 /(w' + w"- w), so that 

' w , •.. , 
= ( · , 1 , ) T w'+l!/'-w,w,tu 11 ,W 1 

w ,-to -w 

= (-, w,-,--')'/, Tww+w"-WW'W", 
w +w -w ' '' 

where 0! = w/(w' + w"- w). We have used here 
the homogeneity and symmetry properties of the 
function T. We transform analogously the expres
sion in the parentheses containing the products nw. 
The Jacobian of the transformation is 
w3 /(w' + w''- w )3. Carrying out the transformation 
in all regions and gathering all terms, we obtain 

r r "'·"''+"'"-"'·""·""' 1 ( w v ( (J) \ s ' ,, " ( '+ II )'\ 1+ --;----+ ,-,--_I - -) • w 'w s l•J w - w '~ . w C•J -- l>l; w' 
(I) 

_ (~ \" J [ (-~-)_ "i2+3s 
II ,I 1+ '+ II ' \ (!) I , (!) (!) - (0' 

( 
(J) \"f,+3s ( w )"lz+3s J 1 11 

- -, ) - ---,- dw dw . 
w ' (0 

(22) 
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The integration is carried out over region (I). 
The function T is positive. The brackets under 
the integral sign in (22) vanish when s = -1 and 
11/ 2 + 3s = -1, yielding two solutions: 

nw = const·w-1 and nw = const·w-''lo. 

Going over to the variables k, we get the solutions 
nk = const · k- 2 and nk = const · k- 13 13• The first 
solution is the Rayleigh-distribution. It obviously 
is not applicable in our case. The second solution 
is the spectrum obtained by us earlier from di
mensionality considerations. It is easy to verify 
that (17) has no other power-law solutions. 

It is also necessary to prove the convergence of 
the integrals in (17) when the obtained solution is 
substituted in it. We consider first the region of 
small k. 

The dangerous regions are those in which each 
of the arguments k1o k2, k3 vanishes separately, 
and also the regions where two arguments, kb k2 

or k1, k3 , vanish simultaneously. Let us consider 
the region where k1 vanishes (k2k3 1- 0). In this re
gion, according to (9), the kernel of the integral 
equation takes the form kt[W(k2, k3)] 2, so that the 
convergence of the integral in this region is as
sured. Similarly, the integral converges in regions 
where the arguments k2 and k3 vanish. 

w" 

We now consider the vicinity of the straight line 
k1 = 0, k2 = 0. Near this line, the expression that 
diverges most strongly is 

nk,nk,(nk,- nk) ~ nk,nk,(k!- k2)ank I ak. 

Taking into account the asymptotic behavior of the 
kernel of the integrand, we can conclude by count
ing powers, that the integral converges in this re
gion, too. We consider similarly the region in 
which k1 and k3 vanish. Let us examine the con
vergence at large k. Owing to the conservation of 
the kinetic energy, two arguments tend to infinity 

simultaneously, for example, k1 and k2• For large 
k, the term of the kinetic equation that decreases 
most slowly is proportional to 

nknk,(nk,- nk,+k-k,) = (k- k3)nknk,ank, I akj. 

Recognizing that for large k1 the kernel is propor
tional to kL we have for the principal term 
kiank /Bk1 ~ Bk13 -113, so that convergence is as
sured. 

Actually, the solution in the energy-containing 
region differs from const· k-13 13• However, the 
convergence of the integral at small values of k 
causes the contribution from the energy-containing 
region to the region of intermediate wave numbers 
to be proportional to (ko/k) 1/ 3k-5, whereas the con
tribution of the region of wave numbers of order k 
is proportional to k- 5• Thus, the contribution from 
the energy-containing region should be neglected. 
Analogously, the contribution from the damping re
gion to the region of intermediate wave numbers is 
of the order of (k/ks)1/ 3k- 5, and this contribution to 
the intermediate region can also be neglected. 
These considerations prove the local isotropy of 
the turbulence. 

Thus, the solution is of the order of nko when 
k ~ ko and nko(k0/k)13 / 3 when k» ko· Substituting 
this solution into (15), we note that the main con
tribution is made by integration over the energy 
containing region. We obtain the inequality 

1 nT 
nk,~-k·3-, 

o Wo 

which limits the region in which the kinetic equa
tion can be used for the description of the plasma 
turbulence. 

In conclusion the author thanks L. I. Rudakov 
for valuable advice. 
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