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Formulas relating thermomagnetic and galvanomagnetic kinetic coefficients are deduced from 
the general expressions for the kinetic coefficients. The quantum oscillations of the thermo­
magnetic kinetic coefficients can be determined from the formulas, provided the expression 
for electric conductivity is known. 

As is well known, the densities of the electric 
current I and of the heat flux q - /;e - 1 I in the 
presence of temperature gradients \7T and an 
electrochemical potential E - e - 1\71;, are equal to 

h ( 1 ) ' I= a E-en -aVT, 

~ ' 1 ) ' q--ei = ~ (E--e- v~ -rvr. 

If the electrons are scattered mainly by impur­
ities,O then the kinetic coefficients &, &, {3, y in 
the absence of a magnetic field are determined by 
relations 

"" of 
Gih = e2 ~ dE-G;h(E), 

-ex> iJE 
(1) 

1 e 00 of 
au,=T~il•=r ~dE iJE (E-~)G;k(E), (2) 
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00 

1 1 of 
'Yih = T -~dE 8E (E- ~) 2 G;k(E)' (3) 

:rt " A 1\ A 

G;k (E)=- -y <Sp {b('E- H) vib (E- H) vk}), 

where f = [exp { (E - t)/T} + 1]-1 is the Fermi 
distribution function, V the volume of the system, 
H the Hamiltonian of the electron in the impurity 
field, and v is the electron velocity operator ,2> 
The angle brackets denote averaging over the ran­
dom distribution of the impurities. 

These formulas can be readily obtained by 
starting from the general expressions for the ki­
netic coefficients in terms of the correlators of 
the electric-current and energy-flux operators, [ 11 

l)We note that this interaction mechanism is fundamental 
in the low-temperature region. 

2)We use a system of units in which 11 = c = 1. 

if the main interaction mechanism is scattering of 
the electrons by impurities. As shown earlier, [ 11 

in the presence of a strong magnetic field analo­
gous expressions hold also for the diagonal com­
ponents of kinetic tensors. 

We shall henceforth omit the tensors of the ki­
netic coefficients, remembering, however, that all 
the relations obtained are valid in the presence of 
an external magnetic field only for the diagonal 
components of the kinetic tensors, and that in ab­
sence of the magnetic field they are valid for all 
components, both diagonal and non-diagonal. 

1. Using the general formulas (1) -(3), we can 
obtain certain relations, independent of the con­
crete form of the function G(E), between the kinetic 
coefficients. To this end we note that an arbitrary 
function f((E- t)/T), which tends rapidly to zero 
for large positive values of the argument, satis­
fies the following relations 

E-~ a 1 " I (E- ~)/' (-) = rz ___ ~ j' (E- ~ )d~~. 
T I 8T T _;., T 

t 

= rz_a_ T2_8 _ _i_ ~ (~- ~')/' ( E- ~I) d~l 
iJT 8T T2 -oo , T 

(f' is the derivative of the function f with respect 
to the argument). Multiplying these expressions 
by G(E) and integrating with respect to E, we ob­
tain in accordance with (2) and (3) 

1 a t. 
a(T, ~) = -~ iJT ~ a(T, ~1)d~1 , 

-00 

v(T,~)= : 2 T :;2 f (~-~~)a(T,s')d~1• (4) 
-oo 
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Differentiating these relations with respect to ?; , 
we obtain 

aa 1 acr 
~=-e-aT· 

ay = _!T aa 
ar;, e aT · (5) 

In the low -temperature region, T « ?; , we have in 
accord with formula (1) [ 4J 

2 2 7 4 2 

cr(T \;) = -e2G(\;)-~ G"(\;)T2- ~G'"'(\;) T" + ... 
' 6 24·15 

Substituting this expression in (4), we get 

a(T 1-)= l'tz 8cr(O, \;) T+ 7n" _?_:<:r(O, \;) T3+ 
' "' 3e 8\; 90e 8\;3 · · · ' 

n2 7n4 82cr (0, \;) 3 Y( T 1-) = -cr(O 1-)T+------- --T + 
' "' 3e2 ' "' 30e2 8\;2 • • • 

The second term in the last formula is a correc­
tion to the Wiedemann-Franz law. 

2. Formulas (4) and (5) allow us to find the 
quantum oscillations of the thermomagnetic kinetic 
coefficients in a strong magnetic field, if the quan­
tum oscillations of the electric conductivity are 
known. 

In [ 1- 3] we obtained the following formula for 
the electric conductivity in the region T ::s WH 
(wH is the Larmor frequency of the electron) in 
the case of electron scattering by the short-range 
potential of the impurity: [4 J 

8 ( \; \2{ n2 T2 
crxx(T,\;)=3nn;e2a2 wuJ 1+3t~ 

5(WH)''' (-1)r (2nr\; n) } +-,- 2: ---=- 'l'(ar)cos ---- +L\a , 
2 \ \; 1 r~l f'2r Wu 4 

(6) 

where ni is the concentration of the impurities, 
a the amplitude for scattering of an electron with 
zero energy by the impurity in the absence of a 
magnetic field, -.Jt(x) = x/sinh x, Qlr = 2n2rT / wH, 

and ~u is defined by the formula 

3 wH ~at E dE 
L\ -- - ~- -----'----"- S \; 0 oE ~ (y-:;j +a yeH/2) 2 + a2eH/2 . 

7J is defined by 

E = WH(N + 1/z) + Y)WH, 0 ~ 'l'J < 1, 

where N is a large positive integer,(V'T, \71;;, and 
the electric field E are directed along the x axis, 
and the external magnetic field H along the z 
axis). Substituting (6) in (4), we obtain for the ki­
netic coefficients Qlxx and 'Yxx 

Uxx(T, \;) = -n;ea2- 1--. ----ion Tr;, { 3 5 r;, ( _wr;,H ) ''' 
9 wH2 2n 2 T 

~ ( -1 )" , ( 2nr\; n ) } X LJ-- =-- lf ( Ur) COS --+ - + L\a , 
r~l f'2r WH 4 I 

Yxx(T, \;) = -n;a2 --\ T 1- --;- -:-8n ( \; ' 2 { 15 (WH)'" 
9 ,uJu) 2 ~ 

"" ( -1 )" , ( 2nr\; n ) ) 
X ~ ---=-- 'Jf { Ur) COS -- - --;- + L\y J , 

r~t y2r wu -'± 
(7) 

where 

dE 
X------=-------. 

(YYJ + af'eH/2)2 + a2eH/2 

We note that an error crept in in the derivation 
given in [ 1J for the expressions for Qlxx and 'Yxx 
(in the substitution of (46) in (24)). The correct 
expressions for Qlxx and 'Yxx are given by for­
mulas (7) of the present paper. 

3. In order to recast formulas (5) in a form 
having an intuitive physical meaning, we change 
from the variables T, !;; , to the variables T, V. 
Regarding the chemical potential !;; as a function 
of these variables, we obtain from (5) 

Introducing the coefficient of isothermal com­
pressibility KT: 

KT= -}( :~ L· 
we can rewrite (8) in the form 

(_a(]_-_) = -~{(~ l (~ l VKT 
f)p T e f)T / v av j T 

+(~ \ (~) } 
aP JT aT v ' 
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( ~- \. = _ _!_T{( !r:__) (~) VKr 
aP !r e , aT,v aV,r 

( aa ) ( a1; ) \ + [jp- T aT vJ• (9) 

In these formulas, P is the external pressure. 
The derivatives (81:/8T)v and (81:/8V)T must be 
determined from the equation 

(. v \ I' dp ( { 1 [ (' v \ ]} \-1 
11 -1~, T)= .\ (2n:)3 exp T E p, No)-1; +1) , 

(10) 

which defines t; as a function of T and V. Here 
N0 is the number of unit cells in the body (V /N0 

= Q is the unit-cell volume), E(p, V /N0) is the 
conduction-electron dispersion law, and depends, 
generally speaking, on Q, and n(V/N0, T) is the 
electron density in the body and depends on the 
volume of the unit cell and on the temperature. 

Differentiating ( 10) with respect to V, we obtain 

( :; )T = A-1{( ~~ )T -~~ (::) 3 ;f/o(p) }, (11) 

where 

fJE 
/o(p) = Q aQ . 

Similarly, differentiating (10) with respect to T, 
we obtain 

( a~; ) { ( an ) 1 \ dp , } 
aT, v = A-1 aT v + TzJ (2:n) 3 [E(p) -1;]1 · (12> 

and D. D. TSKHAKAYA 

Formulas (9), (11), and (12) determine the connec­
tions between the derivatives of the kinetic coef­
ficients with respect to temperature and pressure. 
These formulas can serve for the determination of 
(8n/8T)v and (8n/8V) T• if the derivatives of the 
kinetic coefficients with respect to pressure and 
temperature are known. 

The authors are deeply grateful to V. G. 
Bar'yakhtar for a discussion of the results. 
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