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It is shown that if the cyclotron frequency Q of the revolutions of an ion in a magnetic field ex
ceeds the natural width 'Y of a spectral line, then in the radiation directed transverse to the 
magnetic field the Doppler contour of each Zeeman component is split into a number of peaks. 
The distance between adjacent peaks is Q, and the width of each peak is determined by the 
natural line width 'Y. 

IT is well known that for a gas at not too high 
pressure the width of an atomic or ionic line is 
due to the Doppler effect, and as a rule consider
ably exceeds the natural line width 'Y. 

In the present paper it is shown that if a plasma 
is placed in a sufficiently strong magnetic field, 
then in the radiation in a direction transverse to 
the field the spectral lines of the ions are decidedly 
altered in shape. Namely, when the condition Q 

~ 'Y is satisfied, where Q is the Larmor frequency 
of the ion, the Doppler contour of an ionic line is 
split into a series of peaks with widths equal to the 
natural line width 'Y and separated from each other 
by the amount Q. Accordingly, when observed 
transverse to the magnetic field, the contour of 
such a line takes the form shown in the figure. 
This sort of splitting occurs for each of the Zee
man components of the line (the distance between 
Zeeman components is larger than the splitting 
considered here by a factor ~M/m, where M is 
the mass of the ion and m that of the electron). 

The explanation of this effect is extremely sim
ple. In a sufficiently strong magnetic field an ion 
makes several revolutions in a Larmor orbit dur
ing the time of emission of radiation. For Q > 'Y 
the revolving radiator emits in the plane of revo
lution a discrete spectrum of frequencies w0 + nQ, 
where w0 is the characteristic frequency of the 
stationary radiator, Q is the angular frequency of 
revolution, and n = 0, ± 1, ± 2, .... Since the fre
quency of revolution Q of the ion does not depend 
on its velocity and is determined only by the mag
netic field, in the direction perpendicular to the 
magnetic field all of the ions emit the same spec
trum of frequencies. The only thing dependent on 
the velocity of the ion and the phase of its revolu
tion is the distribution of the radiated energy over 
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Splitting of an individual Zeeman component of an ionic line 
observed transverse to the magnetic field [Eq. (8)]; rry/fl = 1, 
ku/0 = 10. The dashed curve is the Doppler contour as ob
served for y >> 0. 

this spectrum; this will of course be different for 
different ions. Averaging over the ions leads to the 
spectrum shown in the figure. 

These qualitative arguments are confirmed by 
the following simple calculation. Let the magnetic 
field H be directed along the z axis, and let the 
spontaneous emission from the ions be observed in 
the direction of the x axis. We denote the transi
tion frequency for a chosen Zeeman component of 
an ionic line by w0, and the natural line width by 'Y· 
In a semiclassical treatment the field E(t) pro
duced by one ion at the point of observation x1 is 
of the form 

E(t) = EA(t), 

A (t) = exp[i(iwo- V / 2) (t- to) 

- ik(x1 - x(t)) + i¢]. (1) 

Here t0 is the time at which the atom became ex
cited, k = w0/c, x(t) is the coordinate of the ion 
along the x axis at the time t, and 1/J is the initial 
phase. The amplitude E of the electric field is 
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proportional to the dipole-moment matrix element 
for the transition. The total intensity of the Z ee
man component of the line and the polarization of 
the radiation are determined according to the usual 
rules and are not considered further here. 

To obtain the spectrum of the radiation we must 
find the correlation function 

By means of obvious transformations we bring this 
expression into the form 

K(w)= 211 {no~ exp [(- _'\_' 
\ :m 

n=O 

.wo-w \. J l + t--- i 2nn -1 +J1 
[J ' . j ' (6) 

K(t-t') =v<A(t)A.(t')), (2) where 

where the angle brackets denote averaging over 
the ensemble (i.e., averaging over the times of 
excitation t0 ), and calculate the Fourier transform 
of the quantity K(r). The coordinate x(t) of the 
ion, which appears in (1), is 

x(t) = Q-1{vx sin Q(t- t0) 

-- vy[i- cos Q(t- to)]}+ Xo, (3) 

where 'GJ, Vx, vy are the coordinate and the pro
jection of the velocity of the ion at t = t0; 

Q = eH/Mc is the Larmor frequency of the ion, 
e being the charge of the ion and M its mass. Us
ing (1) and (3), we get 

vA (t)A* (t') = y exp {iu>o(t- t') - 1!2'\'(t + t'- 2to) 

+ ikvx~~--1 [sin Q(t- t0)- sin Q(t'- to)] 

+ ikvyQ-1[cos Q(t- t0)- cos Q(t'- t0)]}. (4) 

We shall assume that the velocity distribution 
of the ions is Maxwellian. Then the probability 
that the velocity of the ion is in the limits v to 
v + dv is F(v)d3v, with 

F(v) = (ul';t}-3 exp (-v2 /u2 ) 

[u = (2T/M) 1/ 2 is the most probable speed of the 
ion, T being the temperature of the ions in energy 
units]. Multiplying the expression (4) by the quan
tity F(v)d3v, integrating over the time of excitation 
t0 from -oo to the smaller of the times t and t', 
and integrating over velocities, we find (T = t - t') 

( 'Y k2u2 Q-r ) 
K(-r)=exp --l-rl+iwo-r--sin2 - 2-. 2 Q2 ; 

(5) 

As normalized to unity, the spectral density of 
the radiation for an individual Zeeman component 
is 

1 "" 
K(w) =- I K(-r)e-tw• d-r. 

2Jt .l 

Let us break the range of integration up into seg
ments of length 2n /Q and introduce the new vari
able of integration z = Qr. We then get 

1 oo (2n+i)n 

~ r y Wo-W 
K(w)=- ~ cxp (--izl+i--z 2n:Q 2Q Q 

n=-oo (2n-!)n 

k<u'l z \ 
---sin2-) dz. 

Q2 2' 

1 r ( '\' Wo - ul /c2u2 z \ 
l1=-- \ exp --z+i---z--sin2-l dz 2n:Q . ' 2Q Q Q2 2 .. , 

-:1 

1 r ( '\' . Wo - (t) k2u2 . . Z \ 
l1 = -.)- .\ exp -- --lzl + t----z- - 2-sm2 9 1 dz. 

_JtQ . ' 2Q Q Q - ' 
-:T 

We shall assume that the Doppler width is much 
larger than the natural line width and the cyclotron 
frequency of the ion, i.e., ku » y, Q. Then the im
portant values of z in the integrals J 1 and J 2 are 
z ..$ Q/ku « 1. Therefore we can write 

1 ~ ( luo - w /,-2u2 · 
l1 = lz = -~ \ exp i----z- -z2 \ dz 

2n:Q .. ' Q Lj.Q2 ' 
-oo 

1 [ ( (ol - wo) 2] = -- ---= oxp - - -------- . 
kujn .. lm 

(7) 

Summing the progression in (6) and using the ex
pression (7), we find the following final expression 
for the spectral density of the radiation within the 
range of a single Zeeman component of the ionic 
line: 

K(w) = -~exp [- (w- Wo rJ 
kujn ku · 

sinh ny/Q 
X--~--------. 

'coshnv/Q- cos2n•(w-wo)fQ 
(8) 

Accordingly, the shape of the line is that of the 
Doppler contour modulated by a periodic function 
of the frequency w with the period Q. The integral 

00 

~ K(w)dw = 1 
-oo 

is ~ exp (- k2u2 /Q 2), apart from small correction 
terms. 

If y » Q, then 

1 [ (W- Wo) 2] K(t•l) = ---.::_CXp - ----. 
lwfn \ ku 

[ ( 
Jt)' \ w - Wo 1 

><j 1 + 2 cxp - ·Q'} cos 2n --Q- , 

i.e., the shape of the line differs from the Doppler 
shape by an exponentially small oscillating cor
rection. If, on the other hand, y « Q, then the 
Dopper contour is distinctly split up into a series 
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of peaks separated by the interval Q and having 
the Doppler shape with half-value width equal to y. 
The heights of the peaks are proportional to the 
magnetic field. The figure shows the contour of a 
single Zeeman component for the case in which 
1ry /Q = 1, which means that during the lifetime in 
the excited state the ion makes half a revolution in 
its Larmor orbit. 

If the observation is not made at right angles to 
the magnetic field, then all of the peaks will be 
broadened owing to the free thermal motion of the 
ions along the field. The width of each peak will 
then (if kzu > y) be determined by the quantity 
kzu, where kz is the component of the wave vec
tor in the direction of the magnetic field. There
fore for the effect to appear the deviation of the 
angle of observation from a right angle must not 
be larger than Q/ku (in radians). If the gas pres
sure is high the peaks can also be broadened owing 
to collisions. 

We point out the possibility of obtaining beats 
between different peaks at frequencies that are 
multiples of Q, in an experiment such as the well 
known one done by Forrester and others. l 1l 

The splitting of ionic lines can also in principle 
appear in the absorption of light propagated trans
verse to a strong magnetic field. Within the extent 
of each Zeeman component the absorption coeffi
cient is then of the form (8). 

From the point of view of quantum mechanics 
the effect described here is due to the fact that the 
emission (or absorption) of a photon is accompanied 
by transitions between the Landau levels of the ion. 

Equation (8) is valid for ku » y, Q. For arbi
trary ratios of these quantities one can calculate 
the Fourier transform of the expression (5) and 

easily obtain 

(9) 

where In is the modified Bessel function with in
dex n. For ku » y, Q one can use the asymptotic 
form for the functions In and get (8) from the ex
pression (9). If, on the other hand, the magnetic 
field is so strong that ku « Q, then in (9) we must 
keep only the term with n = 0, and then 

K(w) = (2n)-1y[ (y / 2) 2 + (w -- (uo)2]-t, 

i.e., the line is of the Lorentz shape with width y. 
This narrowing of the line is due to the fact that 
for ku « Q the mean Larmor radius of the ion is 
much smaller than the wavelength, and is analogous 
to the narrowing of lines studied by Dicke. l 2 1 

If the natural line width is not too large, then 
for light ions the Larmor frequency Q becomes 
comparable with the quantity y for magnetic fields 
of the order of some tens of kOe. If the line has 
fine structure or hyperfine structure this of course 
leads to a smearing out of the effect if the distance 
between the components of the structure is small 
in comparison with the Doppler width. 

I am grateful to V. I. Perel' and E. Ya. Shreider 
for helpful advice and discussions. 
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