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It is shown that in the gauge with dz = 3 the Green's function of the electron contains no infra
red divergences and has a pure pole singularity at the point corresponding to the physical elec
tron mass. The character of the singularity of the pole-free part is also determined. 

J. IT is well known that because of the emission 
of soft virtual photons the Green's function of the 
electron does not have a simple pole for p2 - m 2 

(m is the electron mass) but a branch point of the 
power type (p2 - m 2)-1Ty, where y = -aj1r in the 
Feynman gauge. [1J It is established that up to 
terms ~a, y = a(dz- 3)/27r for an arbitrary 
gauge. It is seen from this that the singularity of 
the Green's function becomes a simple pole for 
the choice dz = 3. This result follows, however, 
only in lowest order of perturbation theory, and it 
is therefore of interest to find out what happens 
when the higher orders are taken into account. 
We shall show in the present paper that the choice 
of a gauge with dz = 3 guarantees the absence of 
infrared divergences in the Green's function of the 
electron in all orders of perturbation theory, and 
that in this gauge the Green's function has a simple 
pole at p2 = m2 in addition to terms which remain 
finite at p2 = m 2• The singularity of the pole-free 
part of the Green's function is of the type (p2 - m 2) 

x In (m2 - p2). 

This result is of interest for the formal theory 
of scattering in the sense, say, of Lehmann, 
Symanzik, and Zimmerman, where the pole charac
ter of the Green's function is of fundamental im
portance. The result may have practical value in 
the calculation of quantities related to the electron 
Green's function near the mass shell. 

2. Let us write the Kallen-Lehmann represen
tation for the electron Green's function: 

oc 

S (p) = ~ dz (z- p 2 - i0t1 (wt + Pw2), (1) 
m' 

The states with I Qip) contain for p2 < 4m2 one 
electron with momentum q (q2 = m2) and n pho
tons with momenta ki, where q + I:ki = p. This 
picture corresponds to the Feynman gauge where 

the contraction of the electromagnetic field is pro

portional to gaf3· 
The transition to an arbitrary gauge is carried 

out in the following way. Let us assume that be
sides the photons there are other scalar neutral 
particles with arbitrary masses I-ts (s = 1, 2, ... ) 
which interact with the electron current. If the 
s-th particle is described by the field Bs, then its 
interaction with the current is written in the form 
~seja8aBs, where ~s is some number. We shall 
assume, moreover, that the norm of the single
particle state for the s-th particle has the sign 
7Js=±l. 

The physical picture is evidently not changed by 
the introduction of the particles Bs, since they do 
not in fact participate in the interaction. It is 
easily seen that their role reduces to a change in 
the gauge of the electromagnetic field. The effec
tive contraction of the electromagnetic field with 
account of the fields Bs will be equal to 

igaBi\oc(x-y)+Wa8B 2:£s2T)si\~,C(x-y) (3) 

(~~s is the causal function for mass I-ts)· This re
sult is unaltered if we assume that the auxiliary 
particles B have a continuous distribution in the 
mass. Then 

where u is an arbitrary real weight function. The 
gauge with d z = 3, which was discussed in Sec. 1, 
corresponds to the choice u(~-t 2 ) = 2 o' (~-t 2 ). 

In an arbitrary gauge we shall thus assume that 
the states I ap) contain the particles B besides 
the electron and the photons. Having in mind the 
special gauge with dz = 3, we may assume the 
masses of the auxiliary particles to be very small. 

We are interested in the behavior of S(p) and 
w(p) for p 2 - m 2 = p~ « m 2• In the c.m.s. 

q = -~k;, qo ~ m + (~k;) 2 /2m. 
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From the law of conservation of energy we have 

'f.k;o ~ P12 I 2m, k;o ~ P12 I 2m. 

We shall assume in the following that the masses 
of the auxiliary particles are f.Ls « PU2m. 

Let us consider the matrix element 

The momenta ki refer to the photons as well as to 
the particles B. Evidently 

(11.) 
J1/(rt) ( qk;) = E1"' (k1) ... En"" (kn)Ma, ... a11 ( qk;). 

where E(k) are the polarization vectors for the 
photons and E(k) = ik~ s the polarization vectors 
for the Bs particles. Our task is to investigate 
M<n> (qki) for small ki. 

3. We use the generalized Ward identity which 
gives for M[ ZJ 

(4) 

where M< n-i> does not contain the vector ki. For 
the case n = 1 

(5) 

Let us now choose some relativistically invari
ant function L(q, k, E) which is linear in E and re
duces to - e when E - k. A convenient choice is 

L = -e[2(qe) + (ke)] I [2(qk) + k2 ]. (6) 

Then we conclude from (5) 

M<1> = L + T<1>, (7) 

where T< 1>(E- k) = 0. 
Let us now consider (4) for n = 2. We find that 

M(2J = L1M<1J (k2) + &<2), 

where M_<2> (E1 - k1) = 0. Furthermore, using (7) 
and the symmetry of M<Z> under the interchange 
of k1E1 and k2E2, we obtain 

M<2) = L1L2 + LIT2(l) + L2T/1) + T<2l, (8) 

where T<z> (E1 - k1) = 0 and T<z> (Ez-- k2) = 0. 
Continuing this procedure we represent the matrix 
element M<n> in the form of a sum of terms con
taining either L or expressions 
thogonal to their vectors ki: 

n 11. { n 

jlrf(n) ==II L; + ~ tT}Il n L; 
i=l i='=-f=j 

I 

+ ~ TJ7~, J1 L; + ... + T<n), 
j;*j2 i=FJt=i=i2 

T which are or-

(9) 

where T<n> has the following property: 
T<n> (q- ki) = 0. 

Let now all ki tend uniformly to zero: ki = pki 
and p -- 0. Then L"" p-i and the first term in (9) 
behaves like p -n. It is essential that the remaining 
terms increase less rapidly by at least one power 
of p. 

Indeed, let us consider the graphs of perturba
tion theory. For small p we make in the Feynman 
integrals ~substitution of the variable of integra
tion: li = pli, where the li are the momenta of the 
virtual photons connected with the electron line q. 
It is easy to estimate the general behavior of the 
Feynman integral for p- 0. The electron line con
nected with the electron q gives the factor p-N, 
where N is the total number of emitted and ab
sorbed photons. Assume that m real photons 
(m ::s n) are absorbed on this line, N1 photons are 
connected with other spinor lines and N2 photons 
are emitted and absorbed by the same line. Then 
N = m + N1 + 2N2• The photon lines give the factor 
p -Z<Nl + Nz >, and the volume elements in the region 
of integration contribute p 4<N1 + Nz>. Actually the 
number of integrations will be less: for each 
closed spinor loop there will be a o function which 
eliminates four integrations. On the other hand, 
each closed fermion loop contributes at least four 
additional powers of p and this compensates for 
the reduction in the number of integrations. The 
over-all dependence on p is determined by the 
factor pa, where a = 4(N1 + N2)- 2 (N1 + N2)- m 
- N1 - 2N2 = -m + N1. We have maximal increase 
for m = n and N1 = 0. In the Feynman numerators 
we include only the leading terms, i.e., the factors 
q + m. Each y matrix is sandwiched between two 
factors q + m and is replaced by q/m. 

After summing all graphs we obtain the main 
term in the form p -n(qE 1) ... (qE n)f(q, ki). The 
corrections increase by one power of p less. The 
leading term cannot vanish for E i -- ki and hence, 
must be identified with the first term in (9). It 
follows from this that all terms in (9) except the 
first have the order p1-n. 

It is easy to find also the general structure of 
the corrections increasing like p 1-n. Owing to 
the denominators in the Feynman integral there 
will be corrections of the form 

where f1 and fij depend only on (qki)· The numer
ators give corrections which may contain one fac
tor of the type (kiEj), (EiEj), [ki, Ej], or [Eio ~], 
besides (qEi) and functions which depend on (qki). 
This follows from the fact that, in taking account 
of the terms ""pl-n all y matrices in the vertices 
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except the two outer ones can be replaced by q/m. 
One can show by direct calculation that it is im

possible to construct from all these terms an ex
pression which vanishes under the replacement of 
more than two E by their k. Hence T<n> with 
n 2: 3 increases no more rapidly than p 2-n. 

For n = 1 we have with our choice of L 

1 f/,' , , e , , 
T 1 ! =IT (q + m) [k, e]- 2m (qk) [q, e] 

+ 2~ (qe) [q, k]J / [2 (qk) + /,;~], (10) 

where A. is the magnetic moment of the electron.[ 2 J 

For n = 2 we may construct T< 2 > from the 
terms mentioned in the form 

T<2> = [ ( qei) ( qe2) ( k 1k2) - ( qei) ( qk2) ( k1e2) 

- (qez) (qkt) (k2e1) + (et£2) (qkt) (qk2) ]/, (11) 

where f depends on (qki) and increases like p - 3• 

We note that the explicit form of f has been deter
mined by Soloviev. [ 2 J However, this author effec
tively used the assumption that f contains no 
terms which are finite when only one of the two ki 
goes to zero. The validity of this assumption is 
unclear. 

We must still find out how T<n> behaves when 
only part of the momenta, say k1, •.. , km (m < n) 
go to zero. A consideration of the graphs of per
turbation theory shows as before that in this case 
the maximal increase is connected with the graphs 
which when summed up give a contribution to M<n> 
of the form 

Mt<n-m) ( q + kt + .. ·+ km, lcm+!, ... , k,) ilJ(m)( q, kt, ... , km), 

where M~n- ~> - M<n- m> for ki- 0 (i = 1, ... , 
m). If ki = pki (i = 1, ... , m) and p - 0, this con
tribution increases like p -m. The corrections in
crease less rapidly by one power of p. Since the 
part which increases like p -m is equal to 

m 
Jl](n-m) IT L. 

'• 
i=l 

it does not enter in T<n>. It is clear that T<n> in
creases like p 1-m for p- 0. In sum we find that 
the transverse expression T<n>(qki) behaves like 
p 1-m when any m vectors ki = pki and p- 0, 
where 1 :s m :s n. For m = n 2: 3 the behavior is 
determined by the factor p 2-n. 

4. Let us now turn to the quantity w. Substi
tuting in this quantity the expansion (9) of the ma
trix elements, we obtain a sum of a number of 
terms. The emission or absorption of particles 
corresponds either to the factors L or to the 
transverse expressions T. Let us consider first 

those terms in w in which there are no particles 
emitted or absorbed by the factors L. Since each 
particle is here connected with the transverse T 
these terms do not depend on the gauge, and the 
contribution of the B particles to these terms is 
zero. A typical term has the form (after summing 
over the spins of the electron) 

with 0 :s m :s l :s n. The symbol ~E denotes the 
summation over the polarizations of the photons. 

Let us show first of all that this expression 
exists. In estimating the convergence of the inte
gral (12) we may disregard the 6 function and as
sume that the integration over each momentum 
goes from zero to about PU2m. If any s momenta 
go to zero [ki = pki, i = i1o ... , is C (1, ... , n) and 
p - 0] the dependence of the integrand on p will 
be composed of p 3s-l from the differentials of 
these momenta, p-s from the factors 2kio• and 
p- 2s+ ~-'s from Fnml· The quantity ~-'s is equal to 
1 or 2, depending on whether the set (i1, ••• , is) 
belongs in (1, ... , m) or ( l + 1, ... , n) or not. The 
integral over p will have the form J dp. p -!+ ~-'s 
and will exist for arbitrary s and i1o ... , is, in
cluding the case s = n. This guarantees the exist
ence of the integral (12). 

With account of the 6 function the general de
pendence of the integral (12) on p~ will be of the 
form 

(14) 

The quantity ~-'n depends on the numbers n, m, 
and l. If m -1 n and l -1 0, then ~-'n 2: 2 (vn > 2, if 
either n - m or l 2: 3 owing to the asymptotic 
form of T<n -m> or T<l \If m =nor l = 0, then 
lln 2: 2 if n 2: 3, and possibly ~-'n = 1 if n :s 2. We 
shall show now that even in the last case ~-'n 2: 2. 

Indeed, the summation over the polarizations of 
the photons reduces for m = n or l = 0 in first 
approximation to the replacement of all E i by q 
in T<n>. As is seen from (10) and (11) a factor ap
pears in T<l, 2> which gives an additional power of 
p after the integration over angles. Therefore the 
total contribution to w of the terms of the type 
considered is finite and vanishes at least as rapidly 
as p~ for p~ - 0. 

5. Let us now turn to the case where part of the 
particles are emitted and absorbed by the factors 
L. Let there be one such particle with momentum 
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k and polarization E. The corresponding contribu
tion to w is written in the form of a sum of terms 
of the form 

~ ".' \ _dj!_k_1 . .. d3lcn_ \ d31c _!_ _ 
"-;:; -~ • 2k1o 2kno · 2ko 2qo 

n 

X6 ( L lcio +leo+ qu- flo) ! L 12 Fnuil, (15) 
1=1 

where Fnml is again given by (13). 
Let us first carry out the summation over the 

polarizations (and kinds) of the particles with mo
mentum k. We use here a special choice of the 
gauge with dz = 3. An elementary calculation 
(which is conveniently done in the system where 
q + k = 0) yields in this gauge 

e2 a 
'5' ILI 2 =-- ~' ((aq)(lcq)-m 2(ak))----. (16) 
:" ( q k) 2 "';;' a ( aq) 

The sum is taken over all four-vectors a on which 
F nm z depends including the y matrices. 

Let us denote the result of operating with the 
right-hand side of (16) on F nm z by F~1~z. We 
call attention to the fact that F<1 > behaves no 
worse than F if the vectors k, k1, ... , kn go to 
zero. Indeed, when any s of these vectors are 
small (~ p- 0) then the behavior of F(l) will be 

characterized by the factor p- 2s+v~>. where v~l> 
::: 1. Therefore the entire integral (15) will con
verge. Its dependence on p~ is determined as 

(PI)-t+vh1,\. It is easy to see that v~l,\ = 1 + ~'n• 
where ~'n determines the behavior of the function 
F. It is clear that v<~~ 1 ::: 2 except possibly in the 
case when n = 0, and there are only particles con
nected with the factors L. This corresponds to 
F0 = q + m. After summing over E we find in this 
case 

After integration over the angles of k this expres
sion behaves for k = pk and p - 0 not like p - 1 

but like a constant, which corresponds to v?> = 2. 
Therefore the entire contribution to w from the 
terms corresponding to the emission and absorp
tion of one particle by the factors L is finite and 
vanishes at least as rapidly as p~ for p~- o. 

The case of two or more such particles is 
treated analogously. We then obtain functions F< 2>, 
F< 3 >, etc., which arise from the twofold, threefold, 
etc., application of the differential operators (16) 
on F. They all behave no worse than F if any mo
menta go to zero, and therefore their integrals, 
which enter in w, exist. The behavior of F<r> un
der the condition that all momenta go to zero will 

(r) 
be characterized by the factor p-2<n+r>+ ~'n+r, 
where v ~~>r = r + ~'n· Correspondingly, the contri
bution of these terms to w will vanish at least as 
rapidly as (p~)r for p~- 0. 

6. Summarizing all results, we find that the 
contribution to w from the states with photons in 
the chosen gauge with d z = 3 is finite (contains no 
infrared divergences) and behaves like p~ for 
Pf- 0. After integrating w according to (1) we 
find the Green's function of the electron. The one
electron term gives rise to a pole term 1/(m- p ). 
The states with photons give an expression which 
is finite for p2 - m 2• The singularity of the pole
free term evidently has the character p~ In (-PI). 
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