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A theory is developed for the line shape of the radio-frequency size effect due to cutoff of the 
extremal electron trajectories in a metal plate. It is shown that the line shape depends di­
rectly on the nature of attenuation of the electromagnetic waves in the skin layer. The inverse 
problem of determining the field in a metal from the experimental data is solved. The line 
shape is calculated for exponential radio-wave attenuation. 

1. INTRODUCTION 

SEVERAL recent experimental papers[t-1] are 
devoted to the observation and investigation of 
radio-frequency size effects in metals. These ef­
fects consist in the fact that the surface impedance 
Z of a thin plate is a nonmonotonic function of the 
external magnetic field H, namely, singularities of 
various types appear on the plot of Z against H. 
The size effects are observed in pure single crys­
tals of metals at low temperatures under the con­
ditions of the anomalous skin effect. 

The singularities of the impedance of the plate 
may be connected with two different phenomena. 
One of them is the anomalous penetration of the 
electromagnetic field deep into the sample, to a 
depth much larger than the depth o of the skin 
layer. In many cases[4•8- 10l the electromagnetic 
field in a semi-infinite metal is an aggregate of 
narrow slowly-attenuating peaks located at distan­
ces nD0 from the surface (n = 1, 2, 3, ... is an 
integer and D0 is the characteristic dimension of 
the electron orbit in the magnetic field, D0 » o). 
It is clear that in a plane-parallel plate of finite 
thickness d the emergence (or vanishing) of the 
next succeeding peak on the opposite face of the 
sample (d = nD0) leads to a corresponding singu­
larity in the surface impedance. Another purely 
geometrical effect is also possible. In a magnetic 
field parallel to the surface of the metal, the mo­
tion of the electrons in a plane perpendicular to H 
is finite. In a sufficiently strong magnetic field the 
trajectories of the electrons lie wholly in the sam­
ple. With decreasing magnetic field, the diameter 
of the electron orbit D increases and at a certain 
value of H, equal to H1, it coincides with the thick­
ness of the plate d. Owing to the diffuse character 
of the reflection of the electrons from the boun-

daries of the sample, a ''cutoff'' takes place, 
namely, the contribution of such electrons to the 
current density turns out to be insignificant. With 
this, a singularity appears on the plot of the im­
pedance of the plate against the field; [11 ] the char­
acter of this singularity depends on the form of the 
extremal sections of the Fermi surface. A similar 
size effect was observed at radio frequencies by 
Gantmakher in single crystals of tin[2, 3l and was 
subsequently used to investigate the Fermi surface 
of a number of metals[&-7]. At the present time 
much experimental material is available on size 
effects. There are still no theoretical calculations 
of the line shape. 

The line shape can be affected by various fac­
tors, namely, the inhomogeneity in the distribution 
of the alternating field in the skin layer, random 
deviations of the thickness of the plate from the 
average value, and the inhomogeneity of the con­
stant magnetic field. The line broadening of the 
size effect due to the latter two factors usually 
plays no essential role; for example, etching of the 
samples with acid does not lead to noticeable chan­
ges in the line shape[3•6•7l. It can therefore be as­
sumed that the main cause of the line broadening is 
the inhomogeneity of the electromagnetic wave in 
the skin layer. 

Inasmuch as the shape of the size-effect lines 
is determined by the character of the damping of 
the electromagnetic wave in the metal, we can at­
tempt to reconstruct, by using the line shape, the 
distribution of the field in the skin layer. It must 
be emphasized that an investigation of the distribu­
tion of the high-frequency field in the skin layer is 
an important problem in metal physics. Prior to 
discovery of radio-frequency size effects there 
was no direct experimental method for investigating 
the structure of the skin layer. A study of the 
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Doppler broadening of the cyclotron-resonance 
lines in an inclined magnetic field [12 1 yields only 
the mean distances over which the amplitude and 
the phase of the wave change in the metal. The 
line shape of the size effect reflects directly the 
law governing the field distribution in the skin layer. 

We report in this paper a theoretical investiga­
tion of the line shape of the geometrical size effect 
at radio frequencies, and show the feasibility in 
principle of constructing the field distribution in 
the skin layer from the experimental data. 

2. SYSTEM OF EQUATIONS 

To construct the theory of the line shape it is 
necessary to solve Maxwell's equations and the 
kinetic equation for the electron distribution func­
tion in the plate. These equations can be written 
in the form 

fJ2Ea(z) . 4:rtw . 
--,---'--=-~~-Ja(z) (a=x,y), 

{)z2 c2 (1) 

of of ofo 
- iwf + Vz- + Q- + vf = eEaVa --, 

{)z a. ae 
(2) 

2q 
ja = - ha .l Va/d3p. 

(3) 

The coordinate system is chosen as follows: the 
x axis coincides with the direction of a constant 
magnetic field H (the vector H is parallel to the 
surface of the plate), and the z axis is parallel to 
the inward normal to the surface of the plate z = 0. 
Ea and ja are the tangential components of the 
electric field and current in the metal and w is the 
frequency of the external field; the time dependence 
of all the quantities is in the form exp(-iwt); f is 
the equilibrium addition to the Fermi distribution 
function f0( E); v, p, and E are the electron velocity, 
momentum, and energy, respectively; Q = eH/mc 
is·the cyclotron frequency, and m is the effective 
mass, which depends on E and on Px; 27rm(E, Px) 
= BS(E, Px)/BE, where S(E, Px) is the area of the 
intersection of the equal-energy surface with the 
plane Px = const; T is the dimensionless time of 
motion of the electron along the orbit in p-space; 
v is the frequency of collisions between the elec­
trons and the scatterer (the reciprocal relaxation 
time); e is the absolute value of the electron 
charge, c the velocity of light, and h Plancks con­
stant. 

In (1)-(3) we have neglected the field component 
Ez. This component should be obtained from the 
condition of electric quasineutrality of the metal, 
p' = 0, where p' is the uncompensated charge den­
sity. From the continuity equation it follows that 
the condition p' = 0 is identical with the equation 

jz(z) = 0. In several papers (for example,l 13 l) it is 
shown that in the anomalous skin effect the field 
component E z obtained from the quasineutrality 
condition leads only to inessential small correc­
tions in the system of equations (1)-(3). This is 
due to the fact that the main contribution of the 
current density is made by electrons moving almost 
parallel to the surface of the metal. We can there­
fore assume that E z = 0, and disregard the equation 
jz(z) = 0. 

The solution of the kinetic equation (2) for the 
case when the magnetic field is parallel to the sur­
face of the plate is known to be (see[ 14 l) 

of ~ 1 ~· 
f = _e_~o ~ d-r:'v~(-r:')Hil[ z +- \ Vz(-r:")d-r:"] 

Q De l.(z, r) Q ; 

[ v- iw J X exp -Q-- (-r:'- -r:) . (4) 

Here A.(z, T) denotes the instant of the last collision 
of the electron with one of the boundaries of the 
plate. For an electron which does not collide with 
the surface of the sample A.(z, T) =- oo. The quan­
tity A.(z, T) is defined as the root closest toT of one 
of the following equations: 

1 " 1 " 
Z + Q ~ Vzd-r:" = 0, Z + Q ~ Vzd-r:" = d. ( 5) 

~ " 
Expression (4) corresponds to the condition of 

diffuse scattering of electrons from the surface of 
the metal. It is easy to show [14 1 that such a defini­
tion of the function A.(z, T) ensures the vanishing of 
the nonequilibrium part of the distribution function 
f for electrons scattered by the boundaries of the 
plate. In other words, 

A-(0,-r:)=-r: (vz(-r:)>O), A-(d,-r:)='t' (vz(-r)<O). 

( 6) 

The solution (4) has a simple physical meaning. 
Electrons that do not collide with the boundaries 
are described by the distribution function charac­
teristic of the unbounded metal. The presence of a 
boundary affects the distribution of those electrons 
whose trajectories cross at least one of the sur­
faces of the plate during each revolution. Owing to 
the diffuse character of the reflection, the electron 
is "knocked out of the game" as a result of the 
collision. Therefore in the case of a strong mag­
netic field, when the inequality 

w,v~Q (7) 

is satisfied, the contribution to the current density 
from such electrons is negligibly small. The elec­
trons that do not collide with the boundary can 
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return many times to the skin layer (Q/v times), 
and interact effectively with the high-frequency 
field. It is precisely these electrons which deter­
mine the current density in the metal. 

The region of the states of these electrons in 
phase space can be readily obtained in the follow­
ing manner. We write out the unperturbed equations 
of motion of the electron: 

. e 
p = --(vH], 

(S)* 

c 

r=v (9) 

(the dot denotes the derivative with respect to time). 
The motion along the normal to the surface of the 
plate is described by the equation 

are interested in the properties of the reflected 
wave. Its characteristics are described by the 
surface-impedance tensor Za{3, which is defined by 

z _ 4niw oEa(O) 
aB-~ oEB' (0) . (17) 

Here Ea(O) and E~(O) are the tangential components 
of the electric field and their normal derivatives 
on the surface z = 0. 

To find the tensor Za{3 it is necessary to solve 
Maxwell's equations (1). It is convenient to solve 
them in the Fourier representation. To this end we 
continue the function Ea (z) formally to the region 
outside the plate in the following manner: 

Ea(z)=O (z>d), Ea(-z)=Ea(z). (18) 
c . 

i =- eHPy, (10) From Maxwell's equations (1) it is obvious that the 
continuation of the current density j (z) is similar. 

the solution of which is 

(11) 

The integration constant depends only on Px and E. 

The condition under which the trajectory of a given 
electron is fully contained in the plate is 

Zmax - Zmin < d, (12) 

where 
c 

Zmax- Zmin = eH (Pymax- Pymin) = D (13) 

(minimum and maximum with respect to T). 
Inasmuch as the motion of the electrons in the 

yz plane is finite, the quantity D(E, Px) represents 
the maximum dimension of the electron trajectory 
(with given E and Px) along the z axis. The elec­
trons colliding with the boundaries of the plate are 
those for which 

Zmin > 0, Zmax < d, (14) 

that is, 
c c 

eH Pymax < Zo < d + eH Pymin· (15) 

Substituting here expression z0 from formula (11), 
and we obtain 

c c 
Zj ( 't, Px) = eH (P ymax- Py) < z < d- eH (Py - Pymin) 

(16) 

3. SURFACE IMPEDANCE OF THE PLATE 

Let us consider the case of unilateral excitation 
of the plate by a high-frequency field, when the 
external wave is incident on the surface z = 0. We 

*[vH] =o v x H. 

We change over in (1) to Fourier components: 

k 2fCaJ(k) +2Ea'(O) -2Ea'(d) coskd-2kEa(d) sinkcl 

= 4niwc-2ja(k), (19) 

d 

(g a(k) = 2 ~ dz Ea(z)cos kz, 

00 

Ea(z) = n-1 ~ dkfC a(k) cos kz. (20) 

From the conditions for the continuity of the 
tangential components of the electric and magnetic 
fields at z = d it follows that E~(d) = iwc-1Ea(d), 
and therefore the third term in the left side of (19) 
is kc/w ~ c/wo times smaller than the last term. 
The term 2kEa (d) sin kd describes the change in 
the electromagnetic field on the surface z = 0 due 
to the reflection of the wave from the opposite face 
of the sample. This term must be taken into ac­
count in those cases when anomalous penetration 
of the alternating field in the metal takes place. 

If the thickness d of the plate is considerably 
larger than the depth of penetration 6, that is, 

6<d, (21) 

then the term with Ea(d) in (19) can be neglected 
in first approximation. In this case the influence 
of the shape and finite thickness of the sample is 
manifest only to the extent to which the Fourier 
component of the current density j a (k) is altered. 
The change in L:.l! (k) is due to the aforementioned 
"cutoff" phenomenon. In a bulky sample, whose 
thickness is much larger than the characteristic 
dimensions D0 of the electron orbits, there is no 
"cutoff." In this case the field distribution and the 
surface impedance of the plate have the same form 
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in the first approximation in 6/d as in a semi­
infinite metal. 

As shown in [t1], the change in the surface im­
pedance of the plate Z(d) at d < D0, due to the 
"cutoff" of the electrons near the extremal sec­
tion, is determined by the formula 

Z(d)-Z(oo) = a(1-~)''' (22) 
Z( oo) D02 ' 

where a is a constant of the order of unity (a = 4/37f 
for a spherical Fermi surface). The derivative of 
the impedance with respect to the magnetic field 
has a singularity of the type (1- d2/D5r112• 8Z/8H 
becomes infinite at d = D0 because no account is 
taken in (22) of the smearing of the singularity due 
to the inhomogeneity of the field in the skin layer. 
It is quite obvious (as confirmed by a subsequent 
exact calculation, see (58) and (59)), that the damp­
ing of the wave in the skin layer leads to the esti­
mate 

(23) 

Let us examine the influence of the anomalous 
penetration of the field on the impedance of the 
plate. It is shown in [9] that the peaks of alternating 
field in a metal attenuate rapidly when the vector 
His parallel to the surface of the sample. At a 
depth z = nD0 the amplitude of the peak is of the 
order of (6 /D0)n/2. The amplitude of the peak de­
creases rapidly with increase in depth because the 
electrons producing the bursts constitute a rela­
tively small fraction (of the order of (o/D0)112) of 
the total number of the electrons. It is obvious that 
when d R:J D0 the relative change in the field on the 
surface z = 0 due to the existence of a peak near 
the second boundary is of the order of 6/D0• Inas­
much as the spatial width of the singularities of 
the field is of the order of 6, the relative change 
in the derivative of the impedance (17) is 

were made at radio frequencies (in the range of 
several MHz). In this range, a different procedure 
is usually employed: the plate is placed inside an 
alternating-current coil and is excited from both 
sides; the measured characteristic of the skin 
effect is the real or imaginary part of the depth 
of penetration of the alternating magnetic field 
into the sample 

d 

6 = - 1- \ dzH (z) =-Ea(O)- Ea(d)_ ~=I= a. (25) 
"' H~(O) ; ~ Ea'(O) 

The observed anomalies of the depth of penetration 
are due both to "cutoff" and to peaks of field in 
the metal. 

The term -Ea(O)/E~(O) describes a size effect 
of the geometric type. The term Ea (d)/E~ (0) is 
connected with the anomalous penetration. Unlike 
the case of unilateral excitation, the field peaks 
give a change of impedance of the same order of 
magnitude as electron "cutoff," since the ampli­
tude of the transmitted wave is measured on the 
opposite side of the plate. 

In this paper we consider size effects under uni­
lateral excitation of the plate and confine ourselves 
to the case of low frequencies 

w<v. (26) 

4. CURRENT DENSITY 

Let us calculate the Fourier component of the 
current density jy(k). The size effect takes place 
in the case of "cutoff" of electrons with extremal 
diameter D. In the simplest case of a singly-con­
nected and convex Fermi surface, the extremum 
of the function D(px) = D0 is attained on the central 
section Px = 0. The high-frequency current pro­
duced by the electrons with D(px) R:J D0 is directed 
along the y axis. 

Substituting in (3) the expression for the distri­
bution function (4) and going over to the Fourier 

li7lnZ/i1lniii ~ 1. (24) representation, we obtain 

Thus, under unilateral excitation of the plate, 
the character of the singularity and the line shape 
of the size effect are determined by the electron 
"cutoff." Therefore, to separate the geometrical 
size effect from the phenomena due to anomalous 
field penetration it is necessary to irradiate the 
plate and measure its impedance from the same 
side. Such experiments were carried out at micro­
wave frequencies to study the "cutoff" of cyclotron 
resonances [I J. Under these conditions, however, 
it is difficult to study the line shape of the size 
effect because of the presence of cyclotron reson­
ances. No experiments with unilateral excitation 

z,('C, Pxl '( 

)< ~ dzcoskz~ d-r'vy('i',Px)exp[y(•'--r)] 
Zt('C, Pxl 

xf dk'S'y(k')cosk'[ z+ e~ (py('i,Px)-py('t1 ,Px))1. 

(27) 

Here y = v jQ « 1. The unit step function 8(x) is 
defined in the usual manner: 8(x) = 1 (x > 0), 8(x) 
= 0 (x < 0). By using the function 8(d- D) and by 
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varying the limits of integration in the integral with 
respect to z in accordance with formula (15), we 
take into account only those electrons which do not 
collide with the boundaries of the plate. 

The integral with respect to z in (27) can be cal­
culated in elementary fashion. In order to simplify 
the calculation of the integrals with respect to T 

and T 1 , we shall assume that the projection of the 
electron trajectories on the xz plane are circles. 
Then 

In the limiting case of small y we obtain the 
following formula for the Fourier component of the 
current density: 

00 Px max 

jy(k)= ::~ ~ dk'!y(k~~ ~ dpxmv.1_2 8(d-D) 
-oo Px min 

X ! 1 (kR)J1 (k'R) · [sin(k- k') (d- R)- sin(k- k')R], 

(29) 

where J 1 (z) is a Bessel function and 2R = D(px). 

5. FOURIER COMPONENT OF ELECTRIC FIELD 
AND IMPEDANCE 

The field distribution <Wy(k) in the plate is des­
cribed by the solution of the integral equation (1) 
in which the current jy(k) is determined by (29). 
The kernel of this equation can be simplified by 
using the condition under which the skin effect is 
anomalous, 6 « V 0• The wave number k is of the 
order of 6-1, and consequently 

kDo~ 1. (30) 

Using the known asymptotic expression for Bessel 
functions, we write jy(k) in the form 

Px max 00 

2e2 \ mv.1_ 2 ~ jy(k)=- dpx---e(d-D) dk'&y(k') 
Jth3v · R 

Px min 0 

{ sin(k- k') (d- D) sin(k- k')d 
X k- k' + k- k' 

_ sin(k- k')D -H sin2(k.+ k')f!____}. 
k- k' k +k' (31) 

In formula (31) we retained only the main terms of 
the resultant products of the rapidly oscillating 
functions. It can be readily verified[13 J that in the 
limit of large k and k', the terms omitted produce 
insignificant errors. If we are interested, on the 
other hand, in the line shape of the size effect and 
assume that d - D » 6, then all functions of the 
type (k- k'r1sin(k - k')x can be replaced by 
1r6(k- k'), and sin2(k + k')R can be replaced by 

its mean value 1/2. Azbel' and one of the au­
thors [13•8] have shown that the last term in (31) 
can be disregarded when calculating the field dis­
tribution and the impedance. 

Thus, the equation for the Fourier component 
of the field & y(k) becomes algebraic, and its solu­
tion is 

-2Ey'(O) 
&y(k) = ' 

k2- i4Jtwc-2a(k) 
(32) 

where 

Px max 
2e2 (" mv .1_ 2 

A= h3v J dpxll8(d-D(Px)). 
Px min 

(33) 

For a spherical Fermi surface, the value of A can 
be written in the form 

A=~- (d >Do) 
4mvDo 1 

3Ne2 j 1 

~ (.28o- sin 28o) (d <Do) (34) 

where N = 81rp3 /3h3 is the electron density, and 
sin e0 = d/D0• For a Fermi surface with arbitrary 
shape 

e2 I 
A=-.-\ vy2Q&(e-eF)&(vz)'8(d-D)d3p. 

h3v ·· 
(35) 

It is easy to see that A as a function of the mag­
netic field has kinks at those values of H, where 

d =Do, (36) 

D0 is the value at which D(px) is extremal with 
respect to Px· The surface impedance for a given 
polarization 

4iw r 
Z = R - iX = .l dk & y ( k) 

c2Ey' (0) ~ 
(37) 

is inversely proportional to the cube root of A. 
Consequently, the derivative of the impedance with 
respect to H has a singularity of the type 
(1- d2/D5r112 at the points (36) (see also (24)). 

Near the singularity, when I d- Dol ~ 6, the func­
tion (k- k'r1 sin (k- k')(d- D) cannot be replaced 
by a 6 function. Usually in the study of the size 
effect one measures not the impedance itself, but 
its derivative with respect to the magnetic field. 
Since the relative width of the line is small 
(~H/H ~ 6 /d), the singularities of the derivative of 
the impedance with respect to H (accurate to a 
constant factor) are well described by the deriva­
tive with respect to the thickness of the plate. 
Differentiating (37) with respect to d, we obtain 

Z'= az = 4iw ~ dka&y(k)_ (3 S) 
od c2Ey' (0) 0 od . 
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The equation for the function a S'y(k)/ad can be 
obtained by differentiating with respect to d equa­
tion (19), in which the current density jy(k) is given 
by formula (29). As a result we get 

(k2- i 4nw a(k)) aft Y = ~1tLU?_ -~~ \ dpxnw.1.2 8 (d -JJ) 
, c2 I 8d c2 h3v • 

00 

X~ dk'S' y(k')cos(k- k') (d- R)li(kR)l1 (k'R). (39) 

In the region of strong fields (d > D0) the Fourier 
component of the field in the plate coincides with 
it y(k) for a half-space and is determined by formula 
(32). Therefore relation (39) makes it possible to 
express a elf ylad (and consequently Z') in terms of 
cZ'y(k): 

Px max 

~ dpxmv.1.28(d- D)B2, (40) 
0 

where 
00 

B = 2 ~~ dk elf y{k)sin k(d- R)l1(kR). (41) 

Replacing the Bessel function J 1 (kR) by its asymp­
totic expression for large values of the argument, 
we obtain 

(42) 

The second term in the curly brackets contains a 
rapidly oscillating function, whereas the first term 
changes much more slowly within the limits of the 
line (I d - Dl ~ 1/k). Therefore the second term in 
(42) can be neglected. As a result (40) reduces to 

Px ma.x 

Z' d _ D ) _ ( 4w \2 8ne2 1 
( 0 - -----;;2; h\1 [Ev' (0) F J 

X 8(d- D)¢2(d- D), (43) 

where 

1 oo dk n 
¢(x}= --=- ~ -ity(k)sin[kx- J. (44) 

· llrr Jr'/, 4 -
0 

6. SOLUTION OF THE INVERSE PROBLEM 

In this section we show how to reconstruct the 
field distribution in the layer from the experimental 
data. It is easy to see that if we know the function 
1/! (x), then we can find the field Ey(z). To this end 
we go over in (44) to the coordinate representation: 

2 d 00 dk 
¢(x)= -----=r~ dzEy(z) ~ -coskzsin(kx-~-)- (45) 

l'n 0 0 k''' 4 

The integral with respect to k in (45) can be calcu­
lated in elementary fashion, and as a result we 
obtain 

d\ Ey(z) 
¢(x)= dz-~~,.-. 

~ (z-x)" 
(46) 

Equation (46) is Azbel's equation, the solution of 
which is known, namely 

d 

Ey(z) =- dd 1 \ dx ¢(x), . (47) 
z n ~ (x- z) ·h 

Thus, the field distribution is determined by the 
function 1/! (x) for positive values of the argument. 
We shall use Eq. (43) to find this function. As indi­
cated above, the relative width of the singularities 
of the impedance is small, and the line shape is 
determined by the electrons near the extremal 
sections. Let us consider first the case when the 
diameter D(px) reaches a relative maximum on the 
central section Px = 0. Expanding D(px) in a series 
about Px = 0, we obtain the following equation for 
1/! 2(x): 

Z' d -JJ - w ne (4 )2 8 2 

( o)- 7 h:J.v[Ey'(0)]2 
( mv.1.2) 

R . o 

= M f dx ¢2(x) 
J [x-(d-·Do)J'"' 

d-Do 

where 

Hence 

¢2(x} = - 1- (- ____::___) ~ ~' (u) du. 
Mn dx x l'u-x 

For the minimal diameter we get 

1 d r Z' (u) 
¢2(x)=-~-.l "=du. 

Mn dx 0 -y.x- u 

(48) 

(49) 

(50) 

(51) 

Formulas (47), (50), and (51) give the solution of 
the inverse problem-reconstruction of the field 
in the skin layer from the experimental data on the 
line shape of the size effect. This solution, ob­
viously, is stable against small variations of Z', 
inasmuch as the kernels of the integral equations 
(46) and (50) are singular. 

In connection with the obtained solution of the 
inverse problem, we must make one more remark. 
Formula ( 43) contains the function 1/! (x) with positive 
values of the argument. Consequently, if we regard 
( 43) as an integral equation for the function 1/! (x), 
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then we can determine 1/J (x) from it only for x > 0. 
Therefore in the actual application of formulas (50) 
and (51) it is necessary to use the wing of the size­
effect line on the side of the strong magnetic field. 
This circumstance is connected with the obvious 
fact that in the presence of "cutoff" the contribu­
tion to the current density is made by electrons 
whose trajectories lie wholly inside the plate. We 
emphasize once more that the proposed method of 
reconstructing the field in the skin layer is suitable 
only for unilateral excitation of the plate. 

The obtained distribution of the field in the skin 
layer can be compared with the function E (z) for a 
semi-infinite space: 

rt~, (z). = 2 '(· x cos (xz/6] dx (52) 
E' (0) {j ~ x 3 - i ' 

{j = (c2/4n:wA)'h. (53) 

Figure 1 shows the calculated curves for the real 
and imaginary parts of the function (52). We see 
from the plots that a field of noticeable magnitude 
exists at distances of the order of (3-4)6 from the 
surface of the metal. 
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FIG. 1. Spatial distribution of electromagnetic field in 
metal: a: Re(-77E(z)/E'(O)o), b: lm(-77E(z)/E'(O)o). 

7. APPROXIMATE CALCULATION OF THE LINE 
SHAPE 

Formulas (43), (44), and (32) yield the solution 
of the problem of the line shape of the size effect. 
Unfortunately, it is impossible to carry through all 
the integrations to conclusion in general form. By 
way of an example we present the calculation of the 
line shape for a simplified distribution of the field 

in the metal (compared with the true distribution). 
Namely, we replace the exact expression (52) for 
E(z) by one exponential or by a sum of two exponen­
tials: 

1) Ey(z) = Ey'(O)k~~exp(-kcftZ); (54) 

2 . 

2) Ey(z) = Ey' (0) ~ ka -! exp ( -kaz- rt~) . (55) 
a= I 

An exponential approximation of the field of the 
type (54) was used, for example, by Mina and 
Kha1kin [12 ] in the interpretation of the experimen­
tal data on the Doppler splitting of the cyclotron­
resonance lines in an inclined magnetic field. 

In case (1) the effective damping decrement of 
the wave is determined by the relations 

4rtw z 
-i- (J (kef!)= ketf or 

c2 

Here 

¢2(d- D)= rt [E' (0) )2 k~~ exp [-2keff ( d- D)]. (57) 

Size Effect at Maximum Diameter. We substi­
tute (57) in (43) and expand all the functions in 
powers of Px about Px = 0, where D(px) has a maxi­
mum. Then we obtain on the strong-field size 
(Dmax <d) 

Z' (d- Dmax) = C exp [ -2kett(d- Dmax)], (58) 

where 

C = (8rtw) 2 

c2 / 

( mv .L 2 ) / 

\RjD"J'h .. Px=O 

7rt 
argC = 12. 

At the point of the singularity the derivative 
loln Z/olndl is of the order of (d/6)112 and is 
much larger than unity. 

On the weak-field side (d < Dmax) we have 

Z' (d- Dmax) = C exp [ -2kett(d- Dmax)] 

X{1 + <D[i'j/2kett(Dmax- d)]}, 

where 
z 

<D (z) = i2n;-'h ~ dx exp (x2) 

is the known probability function. 

(59) 

(60) 

Figure 2a shows plots of the real and imaginary 
parts of the derivative of the impedance with res­
pect to thickness (or with respect to field), for the 
case of the maximal diameter and for the field 
approximated by a single exponential. 
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Size Effect at Minimal Diameter. On the strong­
field side (d > Dmin) we have 

Z' ( d - Dmin) = Cw [2keff ( d - Dm;n) J'i', (61) 

where 
z 

w(z)=2rc'f, ~ exp(x2-z2)dx. 

In weak fields, when d < Dmin• we have in this 
approximation Z' = 0, since all the electrons col­
lide during each revolution with the boundaries of 
the plate. 

Figure 2b shows plots of R' and X' vs. the mag­
netic field for the minimal diameter. 

We have also calculated the line shape for the 
more complicated approximation of the field in the 
metal by a sum of two exponentials (case 2). We 
have made here the following substitution: 

(k2·- i4moc-2cr (k)J-1 = 1/z { (k2 + k12) -1 + (k2 + kz2) -1}. 
(62) 

Here 

Jk1J=JkzJ=6-1; argk1=n/3; argkz=O. (63) 

The choice of the arguments k1 and k2 is dictated 
by the fact that the phase of the impedance must be 
-rr /3. Calculation of the line shape in this case is 
perfectly analogous to that for case 1). The results 
are given in Fig. 3. 

x' 
f.O 

0.5 

o 1----a:::-:.9:&-----;-;t;;V!'-e:..~I.0;;-;5,.--­

.JL=.!f_ 
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-0;5 
-0,5 
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FIG. 2. Line shape of size effect for real and imagin­
ary parts of the impedance when the field is approximated 
by a single exponential (case 1)): a-maximum section, 
b-minimum section. The ordinates R' and X' are meas­
ured in units of ICJ. The calculation is made for d/8 = 100. 

It follows from Figs. 2 and 3 that the size -effect 
lines are asymmetrical. For the maximum diame­
ter the lines fall off more steeply in the direction 
of the stronger fields (H > H1), whereas for the 
minimal diameter there is a sharper change on the 
weak-field side. The different character of the 
asymmetry of the lines makes it possible to dis­
tinguish the minimal and maximal cross sections 
of the Fermi surface directly by means of the 
shape of the experimental curves. From a com­
parison of Figures 2a, 3a, and 1, and from (58), it 
follows that the size-effect line shape for H > H1 

duplicates directly the distribution of the field in 
the skin layer. 

Attention is called to the fact that in case 2) the 
line has a more complicated structure than in the 
case 1). It is characteristic that the regions of 
sharp variation of the real (or imaginary) part of 
Z' lie near the extrema of the imaginary (or real) 
part. This fact was recently noted by Krylov [sJ. 
In his paper, devoted to a study of the line shape 
of the size effect in indium under bilateral excita­
tion of the plate, it is shown that the position of 
the maximum of the function BR/BH coincides with 
the region of the sharp variation of BX/BH, and vice 
versa. 

In this connection, he advances the hypothesis 
that some integral connection exists in the size 
effect between R' and X', similar to the Kramers-

FIG. 3. Line shape of size effect for real and imagi­
nary parts of the impedance when the field is approxi­
mated by a sum of two exponentials (case 2)): a-maxi­
mum section, b-minimum section; djo = 100, R' and X' 
are in units of I cJ. 
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Kronig dispersion relations. Actually, the 
Kramers-Kronig relations, which describe the 
analytic properties of the dielectric constant and 
of the surface impedance as functions of the fre­
quency, yield no information whatever on the line 
shape of the size effect. The latter is determined 
by the shape of the extremal cross sections of the 
Fermi surface and by the character of the damping 
of the electromagnetic wave in the metal. From 
the formulas obtained by us it follows that there is 
apparently no such universal connection in the gen­
eral case. 

However, such a relation is satisfied approxi­
mately. For example, if we separate the real and 
imaginary parts in (58) we obtain 

R' = jCjexp ( _ 2 d- Dmax)cos [ 2(d- Dmax) 
\ 6r 6; 

Yl jCj ( 2d-Dmax)' . [2(d-Dmax) /\ = exp - stn 
6r 6; 

7rc J -12' 

7rc J 
12 

(64) 

Because the oscillating factors in R' and X' are 
shifted in phase by rr /2, the regions of rapid varia­
tion of one of the functions coincide approximately 
with the extrema of the other. It can be expected 
that a similar connection will take place also for 
the impedance of the plate under bilateral excita­
tion. 

In conclusion, we consider it our pleasant duty 
to thank M. Ya. Azbel' for valuable remarks. 
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