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A solution of the kinetic equation for the case of diffusion and thermodiffusion in a mixture of a 
monatomic gas and a polar gas with linear molecules is presented. The quadratic approximation 
with respect to the molecular nonsphericity parameter is used. Expressions are obtained for 
the diffusion and thermodiffusion coefficient tensors of the mixture in an electric field. It is 
shown that the change of the magnitude of the corresponding transport coefficients depends on the 
field strength and the partial pressure of the polar gas via the parameter E2/Pi. 

THE transport coefficients of gases with non­
spherical molecules are changed in magnetic and 
electric fields. [ i- 31 The variation of these coeffi­
cients depends on the ratio between the precession 
frequency and the collision frequency of the mole­
cules. The thermal conductivity of a polar gas in 
an electric field was considered by us previously,[ 31 

where we obtained the dependence of the variation 
of the coefficient of thermal conductivity on the 
magnitude of the electric field and the pressure. 
In the present paper we consider diffusion and 
thermodiffusion in a mixture of a monatomic gas 
and a polar gas with linear molecules. The calcu­
lation is carried out with the aid of the kinetic 
equation for a gas with rotational degrees of free­
dom, as was suggested in the work of Kagan and 
Afanas'ev. [ 41 

We write down the kinetic equation for the mix­
ture of a polar gas with linear molecules and a 
monatomic gas in the form 
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where fi, vi, f2, v2 are the distribution functions 
and the velocities corresponding to the molecules 
of the polar and monatomic gases, respectively, 
and M is the moment of rotation of the polar mol­
ecule. The quantity M is determined by the inter­
action of the dipole moment of the polar molecule 
with the electric field. As was shown in [ 31 , 

5 f.!2[ 

M = T M' (ME)[ME]. (2)* 

We shall seek the approximate solution of the 
set of equations in the form 

ft = f[01(1 + cpl), fz = fi0>(1 + (jlz). (3) 

where f{0 > is the equilibrium distribution function 
for a gas with linear rotating molecules, [ 41 and 
f~0 > the Maxwell equilibrium distribution function 
for a monatomic gas. 

By using the conservation laws and assuming 
that the mean moment of rotations of the mixture 
of gases is equal to zero, we get a set of equations 
for the unknown functions 'Pi and cp 2: 
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Here Ei = m 1CU2 + M2/2I, E2 = m 2CU2; C = v- c0 

(c0 is the macroscopic velocity of the mixture of 
gases); ni and n2 are the number of polar and 
nonpolar molecules per unit volume; n10 = ntfn, 
n20 = n2/n, n = ni + n2; 

n1nz(mz- m~) 
dtz = Vn10 + VlnP. (5) 

(mtllt + mzn2) 

Jpq are the collision integrals of molecules with 
indices p and q, having the form 

Here I is the moment of inertia of the molecule. 

*[ME] =' M X E. 

Jpq = ~ fp(O) jq(Ol(cpp' + cpq'- (jlp- Cf!q)gpqWpqdcrpqdf'q, (6) 

where gpq are the relative velocities of the col-
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liding molecules; dapq is the differential cross 
section without account of nonsphericity; dr q is 
the phase volume, dr1 == C~dC 1dQcMdMdQM, dr 2 
== C~dC2dQc; 

/""-. /""-. /""'- We shall seek an approximate solution of the set 
w11 = 1 + ~u[P2(cos guM) + P2(cos gi!Mt) + Pz(cos g'ttM) of Eqs. (11) in the form[ 1, 31 

/""-. + Pz (cos g'uMt)], 

/""-. /"' 
Wtz = 1 + ~tz[Pz (cos gtzM) + Pz (cos g't2M)], w2z = 1; 

(7) 
{311 and {312 are small parameters which take into 
account the nonsphericity of the interaction of the 
polar molecules with one another and the nonspher­
icity of the interaction of the polar molecules with 
the nonpolar; P 2 is the Legendre polynomial. 

The conditions attached to the functions f1 and 

~ ftmtCtdrt + ~ !zm2Czdrz =pea, 

~ !tetdrt + ~ fzezdrz = ~· n1kT + ~ nzkT, 

lead to a homogeneous relation which cp 1 and cp 2 

should satisfy: 

~ it(0>cptmtCtdrt + ~ !z<0>cp2mzCzdr2 = 0, 

~ /!(0l<ptetdrt + ~ /2(0l<pzezdr2 = 0. 

In the consideration of the diffusion, we shall 
seek the functions cp1 and cp 2 in the form 

(8) 

(9) 

Cf!t = -nDtdtz, cpz = -nDzdtz. (10) 

By substituting (10) in Eq. (4), and taking (22) into 
account, we get equations which should be satis­
fied by the unknown functions D1 and D2: 

with 
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D2i = fl2~kC2k + D2~kC2h ( Cz2 - ·~·). (12) 

(In these expressions, M and C1, C2 are the di­
mensionless moment and the characteristic veloc­
ities of the molecules, which differ from the pre­
vious by the factors hi 21kT, Vmd2kT, Vmz/2kT, 
respectively. 

We represent the unknown coefficients nf and 
D~ in the form of the following expressions: 

(p = 1, 2, 3), 

(13) 

where Y == 0 for E == 0. 

To find the coefficients (13), we multiply Eqs. 
(11) by the corresponding functions of C1, C2, and 
M from the expansion (12) and integrate over the 
corresponding phase spaces. By solving the re­
sultant set of equations by the method described in 
[ 31 , we find the coefficients (13). As will be shown 
below, the coefficient of diffusion in the electric 
field is determined only by the quantities Di, Dt 
and YLk, where 

(14) 
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The determinant t.n5 is obtained from t. by re­
placement of the third column by the first column 
of the determinant t.Dt> the determinant 6. 4 is 
equal to the minor of the element (2Tf5 

- 20j3 (T~5 ) 2/T~ 3) of the determinant t., and t.1 is 
the minor of the element (Tr1 - Q51 (ntfn2)-v'mtfm2), 

divided by 2%. (The coefficients T and Q are 
easily calculated by the method suggested in [1, 3 J.) 

To consider thermodiffusion, we shall seek a 
solution of the set ( 4) in the form 

(jlt = -At V In T, cpz = -Az V In T. (17) 

The functions A1 and A2 must satisfy a set of 
equations which differ from (11) by the fact that in 
the left side of the first equation, we have f1°> 
x (E z/kT - 7/z)C 1i in place of the first term, and in 
the second equation on the left will be the term 
fJ0>(Ez/kT- 5/ 2)Czi· By substituting A1 and A2 in 
the form of expressions similar to (12), and solv­
ing the corresponding set of equations, we can de­
termine the expansion coefficients for A1 and A2. 

We write down the equation of diffusion[SJ in 
terms of the functions A and D: 

Cth- Czh = ndtzz [ -1- \ ft<0lCthDt;cli't-~ \ N°lCzhDz;dfz] 
n1 ·- nz. 

+ vi In T r -1-\ /!(0lC1hA1;dft- -~ \ fz<0lCzkAz;drz] . (18) 
L n1· nz · 

Substituting the expansion (12) in (17), and the cor­
responding equations for A1 and A2, we get 

[ 1 v 2kT 1 1 v 2kT _ 1 l Ctk - Czh = ndtzi ---- Dtih- , ----- Dz;ll 
2 m1 2 m2 J 
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We define the diffusion coefficient by means of the 
relation 

Since we have d12 = n -1 'V n10 , for constant T and 
P, we obtain, by using (18), an expression for the 
diffusion coefficient in terms of the expansion 

D;" = r:_~nz (-~ v 2kT v:u,- ~ v 2kT D~~k ). (21) 
3n 2 m1 2 m2 • 

We define the thermodiffusion coefficient as 

D· T- n1n2( 1 v2kTA 1 _1y 2kT A l ) (22) 
'" - 3n2 2 ml lzh 2 m~ 21/z - . 

Using these expressions for D}ik and Ahk and 
the relation (9), we find the value of the coeffi­
cients of diffusion and thermodiffusion in the ab­
sence of the field, and that part which depends on 
the field: 

(23) 

(24) 

Here 
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The determinant b.As is obtained from 6. (15) by 
replacement of the third column by the first col­
umn of the determinant b.At· 

Thus the expressions (23) and (24) show that 
the coefficients of diffusion and thermodiffusion of 
a mixture of polar and monatomic gases become 
anisotropic in an electric field. The tensors Dik 
and D?k are identical in form with the thermal 
conductivity tensor of a polar gas in an electric 
field. [ 3 J Apparently, there will be a similar ten­
sor dependence in all the transport coefficients of 
polar gases, computed in the quadratic approxima­
tion from the parameter of nonsphericity of the 
molecular interaction. 

The anisotropy of the coefficients of diffusion 
and thermodiffusion leads to the appearance of dif­
fusion and thermodiffusion currents in directions 
perpendicular to the directions of the concentra­
tion and temperature gradients if the field makes 
angles with the latter that are different from 0 to 
90 o. The dependence of the coefficients of diffu­
sion and thermodiffusion on the values of the field 
and pressure is determined by the values a of 
(16). As is seen from (16), (23) and (24), for con­
stant temperature and fixed composition, the 
change in the coefficients of diffusion and thermo­
diffusion of a mixture of polar and nonpolar gases 
is determined by the ratio E2 /P11 where P 1 is the 
partial pressure of the polar gas. The dependence 
of a on the composition reflects the fact that the 
effect is determined by the relation between the 
precession frequency of the polar molecules and 
the frequency with which the precessing molecules 
collide with one another or with the other mole­
cules. 

From Eqs. (23) and (24) we find the relative 
change in the coefficients of diffusion and thermo­
diffusion in the case in which the field is parallel 
to the gradients of concentration and temperature: 

(~D) = 2a ~D5 ~' ( ~DT) = 2a~A5 ~ (25) 
Do . II ~D! ~. DoT . II ~A! ~ •• 

The relative change of the thermodiffusion ratio in 
this case is 

For sufficiently large values of the ratio E2/Pt. 
the quantity a - 2 and the effect reaches satura­
tion. 

In order to study the signs of the relative 
changes of the coefficients of diffusion and thermo­
diffusion , and the dependence of the effects on the 
composition of the mixture, it is necessary to sub-

stitute the values of the coefficients T and Q in 
the determinants in (25) and (26). Doing this, we 
get 

~<\5 1 at.X4 + azx3 + aax2 + a,.x +as 
L\ .u = .x - b1x3 +1:;xz +-b-;1 + b, -- ' 

L\m C1X" + C2X3 + C3X2 + C4.X + c 5 

~nt - dt.x'• + dz.x3 + d3x2 + d~,x + d5 

~ 1 e1x3 + ezx2 + ea.x 

~-:- - /!x3 + !2x2+ fax + f,. 
where x = nz/n1. 

(27) 

The coefficients ai, bi> Ci, di, ei, fi are un­
wieldy expressions that depend on the mass, the 
diameters of the molecules, the potentials of the 
intermolecular interaction, and the nonsphericities 
{3 11 and {3 12 . Using (23), (24), and (27) one can show 
that the thermodiffusion ratio and the value of its 
increment b.kT in the field tend to zero when the 
concentration of polar or monatomic gases tends 
to zero. 

In the case of limiting values of the concentra­
tion (n1 = 0 and n2 = 0), the diffusion coefficient 
has corresponding zero limiting values. The 
change in the diffusion coefficient in the field van­
ishes when the concentration of the monatomic gas 
vanishes, and takes on a non-zero value when the 
concentration of the polar gas goes to zero. 

Let us consider the case of molecular masses 
that are close to one another. By substituting the 
values of the coefficients T and Q in the corre­
sponding determinants and setting m 1 = m 2, we 
find that b1 and b2 < 0, b4 > 0, while b3 will be 
positive or negative depending on the parameters 
of the molecules. Therefore, the polynomial with 
the coefficients bi takes on a zero value for some 
value nz/b1. But, since this polynomial is equal to 
6.A1(!J}i + xQB) and koT ~b.At, the zero point cor­
responds to the inversion of the thermodiffusion 
ratio of the mixture of gases as a function of the 
composition. A change in the sign of k T with 
change in the composition of the mixture was ob­
served by Clusius and Flubacher in their study of 
thermodiffusion in the system Ar40 -DC137 . [SJ Cal­
culation of Cl'T as a function of the composition of 
this mixture was carried out by Mason and Man­
chick[ 7 J under the assumption that the interaction 
of the polar molecules with one another obeys the 
Stockmayer potential, while the mutual orientation 
of the dipoles in the collision is fixed and equally 
probable; however, the resultant aT(nz/n1) curve 
did not have a zero point. 

If the coefficient of nonsphericity of the interac­
tion of the polar molecules with one another is 
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known (it can be found from the measurement of 
the thermal conductivity of the pure polar gas in 
an electric or magnetic field), then the experimen­
tally determined value of ndn1 corresponds to the 
inversion point, and allows us to compute the coef­
ficient of nonsphericity of the interaction of the 
polar molecules with the molecules of the mon­
atomic gas from the equation koT = 0. Moreover, 
{312 can be found from measurement of the diffu­
sion coefficient and the thermodiffusion constant of 
the mixture in an electric field. Use of these two 
independent methods obviously makes it possible 
to understand the nature of the nonsphericity of the 
interaction of the polar and nonpolar molecules, 
and also to make clear the suitability of the con­
sidered model of interaction of the molecules for 
the description of the transport properties of the 
mixtures of polar and monatomic gases. 

In the case m 1 = m 2, the coefficients dj, ei, 
fi > 0, while ai, Ci < 0 for arbitrary diameters of 
the molecules and nonsphericities. From Eqs. (25) 
and (26) it follows that the diffusion coefficient and 
the thermodiffusion ratio of the mixture of mon­
atomic and polar gases with masses that are nearly 
the same are decreased in an electric field. At the 
inversion point, the thermodiffusion ratio in the 
electric field is determined completely by the 
collision-cross-section change due to the non-

sphericity of the interactions {3 11 and {312• 
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