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The static Jahn-Teller effect on impurity centers in semiconductors is investigated. Interac
tion between the impurity center and lattice is regarded as an interaction with an elastic aniso
tropic medium. The nature and magnitude of splitting of the impurity-center ground state are 
derived for various types of symmetry centers in cubic crystals. The magnitude of the Jahn
Teller splitting increases with increasing ionization energy E of the impurity center and may 
be of the order of 0.01-0.002 eV for centers with E0 ~ 0.05-0.1 eV. 

IN 1937 Jahn and Teller have shown [ 1 J that if the 
ground state of a polyatomic molecule is degener
ate, then it is stable with respect to displacements 
of the atoms from symmetrical positions, leading 
in the general case to a lifting of the degeneracy of 
the electron level. Subsequently the Jahn-Teller 
effect was considered by Van Vleck, Opik, and 
Pryce and by other authors for octahedral and tetra
hedral complexes of ions in crystals. [ 2 J Moffit et 
al. [ 3 J considered the dynamic aspects of the Jahn
Teller effect and indicated that for low-symmetry 
stationary states due to the Jahn-Teller effect,to 
exist in molecules, it is necessary to satisy the 
condition .0.E > nw, where .0.E is the magnitude of 
the Jahn-Teller splitting of the degenerate state 
and w is the characteristic oscillation frequency 
of the atoms. 

We consider in this paper the Jahn-Teller effect 
for shallow impurity levels in semiconductors. 

It is known that the ground state of shallow im
purity centers in semiconductors has a degeneracy 
multiplicity which coincides with the degeneracy 
multiplicity of the band at the extremum point. 
Since the valence bands are degenerate in the ele
mentary semiconductors Ge and Si, and also ap
parently in all semiconductors of the A3B5 type 
(InSb, GaSb, GaAs, etc.), we can expect the Jahn
Teller effect to take place for acceptor centers in 
such semiconductors. However, the method used 
by Van Vleck, Opik, and Pryce and others to cal
culate the Jahn-Teller splitting is based on the 
quasi-molecular model of the complex in the crys
tal and is not applicable to semiconductors, since 
the wave function of the shallow acceptor center 
extends over many lattice constants. This circum
stance, however, makes it possible to regard the 
interaction of the impurity center with the lattice 

as an interaction with an elastic anisotropic me
dium. In this case the analog of the Jahn-Teller 
displacement of the atoms in the molecule will be 
the occurrence of elastic deformations in the 
crystal. Since the form of the operator of interac
tion between the impurity center and the deforma
tion is known, [ 4 J we can obtain the magnitude and 
the character of the Jahn-Teller splitting of the 
impurity centers in semiconductors. 

In this paper we consider the static Jahn-Teller 
effect for sufficiently shallow impurity centers in 
semiconductors, and obtain the character of the 
splitting of impurity centers of different symme
try in cubic semiconductors with the extremum of 
the band at the center of the Brillouin zone. It is 
shown that for orbitally non-degenerate centers 
(representations rl> r2, rs. r7) the interaction with 
the deformation leads to a certain lowering of the 
ground state, and for centers with orbital degen
eracy (representations rs. r4, rs. ra) in additional 
splitting of the degenerate level of the impurity 
center takes place. The Jahn-Teller splitting of 
the impurity center differs in this case from the 
splitting of the degenerate impurity level for a 
specified external strain in that the stationary 
state corresponds only to the lower of the split 
levels. This gives rise to a different type of de
generacy, in which a finite number of states of the 
impurity center, differing in the strain direction 
(representation r 4, r 5), or even an infinite set of 
states, for which the direction of the strain changes 
continuously (representations r 3, r 8), correspond 
to the same energy. Estimates of the magnitude of 
the effect and of the criterion for its existence 
show that the static Jahn-Teller effect can be re
alized in semiconductors. 

1. We consider a crystal at zero temperature, 
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with impurity center whose ground state is de
generate. In the effective-mass method the wave 
functions of the impurity center >It< i> (i = 1, 2, ... , N, 
where N is the multiplicity of the impurity-center 
degeneracy) are represented in the form of a prod
uct of slowly varying wave functions f~i> and Bloch 
functions 'Pks>, corresponding to the extremum of 
the band:[ 5l 0 

(1) 

In (1), s = 1, 2, ... , N0, where N0 is the multi
plicity of the degeneracy of the band at the extre
mum po~nt J<o. The functions f<i>, with N0-compo
nents f~l) (s = 1, 2, ... N0), can be written in the 
form of a column with N0-components; in this case 
the operators acting on f~il have the form of N0 

x N0 matrices. 
In a crystal free of strains, f~ i> is determined 

by the system of equations: [ 5l 

~ (i) (i) 
~ (Ht),t/o,t=Eo/o,s, (2) 

where Hz is the energy operator of the impurity 
center in the effective-mass method. The explicit 
form of the operator Hz will not be needed here. 
The interaction between the impurity center and a 
slowly varying elastic deformation, described by a 
deformation tensor E a{3 =% (oua/oXf3 + ou{3/oXa), 
where u is the displacement vector, is determined 
by the operator HE!, which is linear in the defor
mation[S, 5l 

Hez = ~DaB Ea~ (r), 
a,B 

(H,,),t=~Dst"BeaB(r), (3) 
a,B 

where D~f are constants of the deformation poten
tial, determining the splitting of the bottom of the 
band during the deformation. The form of the ma
trix HEz and the number of the constants of the de
formation potential are determined uniquely by the 
symmetry of the functions cpk~>. The presence of 
an interaction that is linear in the deformation 
causes the stationary states of the crystal with im
purity center to correspond to a state with non
zero deformation, leading in the general case to the 
splitting of the initial degenerate impurity level. 
The energy density operator of the crystal in the 
presence of a strain takes the form 

(4) 

where EE is the energy of the elastically deformed 
crystal: 

E.= 1/z ~ AaJlvO EcxB (r) Evo (r); 
c:tBYO 

Here Aa{3y6 is the elastic-constant tensor. 

{5) 

For a specified strain E a{3(r), the wave functions 
of the impurity center satisfy the system of equa
tions 

(6) 

The strain should be determined here from the 
equilibrium condition, which in the stationary case 
is of the form 

(7) 

where u ik are the components of the stress ten
sor. The stress tensor consists of a part propor
tional to the elastic strain, and of the stress u<e> 
produced by the electrons of the impurity center 

ail, = ~}.if:!"' Eim (r) + CJ;k<cl, (8) 
l, 1n 

where 

{9) 

Equations {6)-{9) constitute a complete system de
scribing the interaction of the impurity-center 
electron with the static strain produced in the 
elastic medium. 

The problem of determining the wave function 
of the impurity center is thus self-consistent, 
since the wave functions are determined by the 
strain as in (6), but the strain itself is determined 
by the wave function of (7)-(9). In this sense, the 
problem is similar to the case of large-radius po
larons, [ 7 l where a self-consistent polarization of 
the medium, leading to the occurrence of the po
laron state, is likewise produced. Pekar and De1-
gen[SJ considered the interaction of the conduction 
electron in a homopolar crystal from the point of 
view of the possible formation of a localized state 
of an electron-condenson. They have shown that, 
at any rate for states with sufficiently large radius, 
production of a condenson is impossible. Self
consistent interaction of the exciton with the lattice 
in molecular crystals was considered by Rashba. [ 9l 

In the present paper we are considering the split
ting of the degenerate level of the impurity center 
due to interaction with the elastic strain produced 
in the crystal. 

Let us consider the case when the level shift 
L\E = E - E0 due to the interaction with the elastic 
strain is much smaller than the ionization energy 

l'iE I Eo~ 1. (10) 

In this case perturbation theory is valid and the 
wave functions f can be sought in the form of a 
linear combination of the functions rJi> 
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"" ~ (i) f = L:..JCi fo(i>, Is= L:..J C; /o, 8· 

Substituting (11) in (9), we obtain for uik>: 

(J (e)-~ C C *A· 111 " ik - LJ m n 1h , 
A mn ~ Dikj•(n)j (m) 

ih = LJ 81 o, 8 0, t • 

8. t 

(11) 

(12) 

The equilibrium equation (7), which determines the 
connection between the strain and the wave func
tions, is transformed into an inhomogeneous dif
ferential equation, in which the coefficients Cn and 
cri_ play the role of parameters. 

Let us show now in the general case that the 
presence of a strain leads to a lowering of the 
impurity-center energy, i.e., .6E < 0. From (6) in 
the approximation (10) we obtain for the energy E 

E =Eo+-}~ AiP.lm ~ tik tim dr: +I~ ~ IJu/e) eu, (h. (13) 

In (13), the second term is the elastic energy of 
the strained medium E€ (EE > 0), and the third 
term describes the interaction with the elastic 
strain. 

To calculate ,E J u~k> € ik dT we multiply the 

equilibrium equation (7) by Ui, sum over i, and 
integrate over the entire volume. As a result we 
get 

perpendicular unit vectors ej (j = 1, 2, 3), which 
are conveniently chosen to be the polarization vec
tors of the elastic waves e j = e j (q): 

u(r) = ~ ~ ei ( q) yqj e;qr d3q" est (r) = i ~ ~stj yqj eW d3q, 

(17) 

We likewise expand u~J(r) in a Fourier integral: 

IJa~(e) ( r) = ~ IJa~(e) ( q) eiqr d3q 

= .2;CmCr: ~AaBn"'(q)eiqrd3q. 
rn, n 

Then Eq. (7) yields 

( 18) 
j' ,0y8 

We multiply both sides of (18) by e~ and sum over 
()!; 

(19) 

Using an identity readily obtained from the equa
tions for elastic oscillations of the medium 

(20) 

(14) where Wqj is the oscillation frequency of the j
branch and p is the density of the medium, we ob-

Integrating (14) by parts, using (8) and the sym
metry of uik• we obtain 

or 

(15) 

Thus, the energy of interaction between the im
purity center and the elastic medium is negative 
and is exactly double the elastic energy of defor
mation. Therefore 

!J..E =-E.< 0. (16) 

We shall show further that in the case of orbi
tal degeneracy of the state of the impurity center, 
this reduction in the energy is accompanied in 
general by a splitting of the impurity-center level. 

To determine the strain from the equilibrium 
condition (8), we determine the displacement vec
tor u, which is written in the form of an expansion 
in a Fourier integral 

u(r) = ~ u(q)eiqr d3q. 

We resolve the vector u(q) along three mutually 

tain 

(21) 

Thus, rj(q) is a quadratic function of Cm. Sub
stituting Yqj in EQI{3• we obtain .6E: 

!J..E = -E. = _.!_ -~ I IJaB<eJ eafl dr: 2 .) 

= -(2rt)3~ ~ ~~i(q)r d3q_ 
. 2pWqj 
J 

(22) 

.6-E contains the coefficients Cm, which actually 
determine the character of the splitting of the 
impurity-center level. 

To determine the coefficients Cm it is neces
sary to solve the Schrodinger equation (6), which in 
the approximation (10), (11) takes the form 

(23) 
s, k n 

Multiplying both sides of (23) by f~<t summing 
' over i, and integrating over the volume we obtain 

a system for determining the coefficients Cn: 
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where 

"" \ •(n) (h) 
lV nh = LJ .\fa, i (Hez) is /o, s dt 

is 

(24) is factually equivalent to the hydrogen-like model 
for the degenerate impurity center. Namely, from 
among all the functions f~s>k, we retain only one
the spherically symmetrical function cp 0• From 
this we obtain for ros )k 

' 
==" i (2rt) 3 ~ Aa~·"" ( q) Vqj -;,a~i d3q 

j, a~ 

= -(2rt)3 L;. CmCt ~ Aa~*nh(q)A-,om1 (q) 
jmlaBv6 

ea~i eyoi 

puJ,1/ 

(25) 

Thus, each matrix element Wnk is a quadratic 
function of the coefficients Cm. Therefore, to de
termine the coefficients Cm we must solve the 
nonlinear system (24). The nonlinearity of the sys
tem is connected with the self-consistency of the 
problem in question: the wave functions are deter
mined by the strain, but the strain itself is deter
mined by the form of the wave function, i.e., by the 
coefficients Cm. The level splitting differs in this 
case from the level splitting for a specified exter
nal strain, [ 4J when the number of the splitting lev
els is equal to the number of the different roots of 
the corresponding secular equation. In our case, 
for each permissible type of strain there is possi
ble only one (lower) state corresponding to the 
equilibrium condition. 

It is easy to understand physically and to verify 
directly that the system (24) is exactly equivalent 
to the problem of finding the minimum of AE in 
independent variation with respect to en and cri_ 
and under the normalization condition ~n I Cn 12 = 1. 
Equations (24) and (25) yield the solution of the 
problem on the deformation Jahn-Teller splitting 
of the degenerate levels of impurity centers in 
semiconductors. For a concrete calculation of the 
character and magnitude of the Jahn-Teller split
ting it is necessary to know the wave functions 
f~s >k of the impurity center. 

'2. It is known that the multiplicity of the degen
eracy and the symmetry of the impurity center 
(ground state) coincide in the effective-mass meth
od with the multiplicity of the degeneracy and 
symmetry of the wave functions of the carriers at 
the extremum point. We shall consider below cubic 
crystals with an extremum of the band at the cen
ter of the Brillouin zone (ko = 0). The wave func
tions of the acceptor centers in crystals of the type 
Ge and Si were considered in the paper of Kohn 
and Schechter. [ 10 J Bearing in mind a determina
tion of the character of the splitting and an esti
mate of the magnitude of the effect, we shall make 
a simplifying assumption with respect to the form 
of the wave functions of the impurity center, which 

(s) 
/o, k = <jlo bsh· (26) 

d d f <i> w . <i> In ee, rom (1) we_get IJl = 'Po'Pko• 1.e., 1J! 
transforms like ~t>. It is clear that the approxi
mation (26) can only change slightly the magnitude 
of the splitting, but not its character or order; 
however, it does simplify greatly the result and 
makes it possible to obtain it in closed form. 

For A mn we obtain 

mn ik 2 Au, = Dnm <:po (r). 

From this we get the values of W nk• which deter
mine the system (24): 

ur --(2 )3~C C*D aBD vol <Do2(q)-;,voi~aBid3q 
n nh - n ,6 m I nk lm .J 2 , 

fJ<Uqj 

where 

<Do ( q) = --1-- \ <:pn2 (r) e-iqr dt. 
( 2rt) 3 • 

(27) 

Inasmuch as cp0 (x) is a continuous function, the 
values of q which are essential for the integration 
are sufficiently small in the integral with respect 
to d3q in (27), so that w~ = C~q2 , where Cqj is 
the speed of sound. In this case W nk can be writ
ten in the form 

ll/nh =-<cpa")~ Cm Cz* DnkaB Dznz'~6 SaBv6, (28) 

where 

(29) 

In (29) dS1q is a solid-angle element. The tensor 
Sa{3y 0 is perfectly analogous in its symmetry 
properties to the elastic-constant tensor, and has 
for cubic crystals three independent components: 

Sxxxx - S11, Sxxyy = 812, Sxuxy = S~,~,... (30) 

We represent the matrix D = ~DO'f3E a{3 in the 
form 

where 10 is a unit matrix, Tr E = Exx + Eyy + Ezz 
describes the change of the volume due to the 
strain, and a is a constant of the deformation po
tential, determining the shift of the band as a whole 
under hydrostatic deformation. Thus, only the ma
trix D' determines the splitting of the band in the 
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case of uniaxial deformation. The trace of the ma
trix D' is equal to zero, and since D' = 0 under 
hydrostatic deformation, we have ~aD'~t = 0. 

Using (28)-(31) for D.E and Wnk• we easily ob
tain, after simple transformations 

0.E = - 1/z(<po')3a2 (SII + 2Stz) 

- 1iz(fJ'o4 )'LC., 'C,/'tCm[ (S11 -- Stz)P<nm, -' 1l + S44Q<nm, sl)] 

= - 1/z\cpo4 )3a2 (Su + 2Stz) + !1E', 

W,n = -\cpo4)3a2 (Su + 2Stz)6n~t- (cpo'>l:CmCz* 
X [ (Su _ Stz)J><nk, lm) + S,..Q<nk, lmJ] 

= -3a2 (<po4 )(Su + 2Stz) Bnn + ll',t/, 
where 

(32) 

P(nk, /111) - ~ D I 1cr.a.JJ, 1cm - f) n'xxJJl 1xx + D J 'uuJJ, 'uv · - ~ n~ m - n m Hi 1n 

f)(nk, /m) - ~ J'J 'allJJ1 'all -f) 1 1xyJJ1 1xy +f) ,lxzJJ1 1 xz ~ - .LJ 11h JH - n ~ m 111-1. m 

In the approximation (26), the strain E a{3(r) is 
simply proportional to (/)5(r): 

Ea~ (r) = aq;o2 (r) (S11 + 2S1z) 6a~ 

2 ( ) "' c c ·n'v6 s - cpo r .LJ m n nm af3v6 · · · 
Iiiii, )'b 

The average value of the strain roa{3 
x (/)~(r) dT is 

< " ~ c· c ·n'vo s· - <poi/ ~ m n nm a.flvn. 
m, 11, v6 

It follows from (29) that 

- J ro a{3(r) 

1 r ( eiq) 2 

Su + 2Stz = -,-- ~ ~ ---2- dQ". 
12:rt . p(l),,i 

J . 

(33) 

(34) 

(35) 

The energy bands have the highest symmetry at 
the center of the Brillouin zone, where the wave 
vector group coincides with the total cubic group. 
If spin is disregarded, there are in a cubic crystal 
five irreducible representations ri (i = 1, 2, 3, 4, 
5), of which two are one-dimensional (r1 and r 2), 

one is two-dimensional (r3), and two are three
dimensional (r4, r~. If spin and spin-orbit inter
action are taken into account, the band symmetry 
is characterized by the irreducible representation 
of the double cubic group rs. r?, and rs. where rs 
and r7 are two-dimensional and rs is a four
dimensional representation. These representations 
are derived from the representations r i (i = 1, 
..• , 5) of the cubic group by expansion of the direct 
product ri X D(i/Zl, where D(1/Zl is the irreducible 

representation of the rotation group with weight 1/ 2: 

r1 X D<'J,) = r6, rz x nc;,) = r,, r3 x IJ!':,, = r8, 
r. x D<'hl = r6 + r~. r5 X JJ<':,, = r8 + r~. (36) 

Thus, in the limiting case of weak spin-orbit 
interaction it is necessary to consider the repre
sentations r i (i = 1, ... , 5), and in the case of a 
strong one-the representations rs. r7, and rs. 
As follows from the theorem on time reversal, in
teraction with a strain cannot lift the Kramers de
generacy; therefore the energy shift D.E for the 
doubly degenerate levels r 6 and r 7 coincides with 
D.E for orbitally non-degenerate levels r 1 and r 2. 
We shall consider below three main cases which 
can be realized in cubic crystals: !-orbitally non
degenerate levels r1, rz, rs. and r?, 2-doubly 
degenerate level rs. 3-triply degenerate levels 
r4 and r5, and 4-fourfold degenerate level rs. 

1. In the case of non-degenerate bands D' = 0 
and the entire interaction with the strain reduces 
to the first term in (32). Therefore for non
degenerate bands the decrease in the level energy 
due to the interaction with the strain is equal to 

(37) 

If we go over to the approximation of an elastically 
isotropic medium, i.e., replace the elastic con
stants C11 , C1 2, and C44 by the mean values C11 , 

c12• c44• for which the conditions of elastic iso
tropy are satisfied: 

C11 -- Ctz = 2c44, (38) 

then we can easily obtain for s11, s12• and s44 

s •• = 1~) (c:. + ~ c~) · (39) 

From this we get S11 + 2S12 = l/3C11 • From the 
isotropy condition (38) follows a similar relation 
between S11 - S12 and S44: 

( 40) 

2. In the case of a doubly degenerate band r 3 , 

the matrix D' in the basis of the functions that 
transform like -13 (x2 - y2) /2 and z2 - (x2 + y2) /2 
is of the form 

D'= b(E~~x+Eyy-2Ezz l'3(Eyy-.fn).!, (4l) 
2 l'3(eyy-Exx)-(exx+euv-2Fzz) 

where b is the constant of the deformation poten
tial and describes the splitting of the band upon de
formation in the (100) direction. From (41 we ob
tain 
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b 
Du'xx = Du'YY = - Dz/xx = -f).,.,''"' = -- . ... - -- :2 ' 

Using (32) and (33) we get 

3a2 3!J2 
f:..E =- -.-1-- (S11 + 2S!z)<<po1')- /.-<cro4)(S11 - 8 12 ). (42) - ~ 

Thus, in the case of the representation r 3 the 
value of b.E does not depend on the coefficients c 1 
and C2; in this case (23) is satisfied identically 
for arbitrary coefficients C1 and C3. 

For the level r 3, in accordance with (34), there 
arise besides hydrostatic deformation also compo
nents of shear deformation 

c n: - -;;1111 = 2V'AC 1C2( rpo4 > ( S11 - Sd b, 

where b and d are the constants of the deforma
tion potential and determine the splitting of the 
bottom of the band upon deformation along the di
rections (100) and (111). From (45) we get D~f/3: 

JJII'YY = Du'zz = D'22.'xx = D33'xx = - Du'xxj2 

=- D'22.'YY/2 =- D3s'ZZ/2 = b 

(46) 

From (46) we obtain a system of equations for de
termining the coefficients Ci and b.E: 

CdC12 (3b2 (Su- S12)- 2dJS44 ). 

+ 2d2S"- b2 (S11 - S12 )] =-~ _f:...E'C1_. 

3 <cpo'> 
(47) 

The remaining two equations are obtained by cyclic 
permutation of the indices 1, 2, and 3. 

Let us consider the solutions of the system (47) 
for the case 

(48) 

In this case the system (47) has three types of so
lutions: 

a) cl f. 0, Cz f. 0, c3 t- 0. From (47) we get CI 
= c~ = c~ = %. altogether four solutions having the 
same energy b.E: 

Solution a) corresponds, in addition to hydrostatic 

which depend on the coefficients c 1 and c 2. They 
satisfy one condition: 

(44) 

and are arbitrary in all other respects. Thus there 
remains a unique degeneracy in the strain direc
tion, when the magnitude of the shear deformation 
is determined by formula (44), but its direction is 
arbitrary. 

3. For the triply degenerate band r 4 and r 5, 

the matrix D' is the same and takes the form[Sl 

(45) 

deformation, also to the shear deformations Exy• 

Exz• and Eyz 

(50) 

etc. Thus, case a) corresponds to a deformation 
in the ( 111) direction. 

b) C1 = 0, Cz -/:- 0, C3 -/:- 0. It follows from (47) 
that in this case C~ = C~ = 1/z or, in particular, c 2 
= C3 = 1/17. We obtain altogether six solutions of 
this type with energy b.E: 

3a2 

f:...E =- -2- <cpo'•)(Su + 2S12) 

3 b2 
- 2 <cpu'>( d2S .. +-2 (Su-S,z)). (51) 

In case b), besides the hydrostatic deformation, 
the following deformation components differ from 
zero: 

cyy = ew e.:cx - eyy = - 3/zb_ ( S11 - S12) <qJo' ), (52) 
eyz = -<cpo4 )df3St,t, 

(the remaining five solutions are obtained by per
mutation of the indices), corresponding to deforma
tion of the crystal in the (0 11) direction. 

c) Ct = C2 = 0, C3 = 1. There are three types of 
such solutions with energies 

f:...E = - 3/za2<cpo4)(Su + 2Siz)- 3b2 (S11- Siz)<(jlo4 ). (53) 

For the solution c) the non-zero strains are 

(54) 
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which correspond to deformation of the crystal 
along the (00 1) direction. 

These three types of solutions correspond to the 
three cases of Jahn-Teller splitting of an octahe
dral complex, as obtained by Opik and Pryce. [ZJ 

Thus, the number of levels with different energy, 
arising as a result of the Jahn-Teller splitting, is 
determined by the number of different types of de
formation which can exist in stationary manner in 
the crystal. This gives rise to a specific degen
eracy, when several levels with different deforma
tions have the same energy. Thus, for the levels 
r 4 and r 5, cases a), b), and c) correspond, in 
accordance with the cubic symmetry of the crys
tal, to groups of 4, 6, and 3 levels with identical 
energy. This degeneracy is outwardly analogous 
to the ''many-valley" degeneracy of the extrema 
of bands in semiconductors: 

We have considered the case when 3b2(S11 - Sd 
-1- 2d2S44• If 3b2(S11 - 812 ) = 2d2S44, then the system 
(47) has a solution for arbitrary coefficients C1, 

C2, and C3 and the energy D.E is in this case equal 
to 

In this case the energy D.E for the cases a), b), 
and c) coincide and are equal to this value. An 
"accidental" degeneracy in the strain arises, 
wherein the energy does not depend at all on the 
direction of the strain. The condition 3b2(S11 - 8!2) 
= 2d2S44 corresponds to "isotropy" of the Jahn
Teller effect and is realized, for example, in the 
case of elastic isotropy of the crystal, when S11 
- 812 = 2844, and the "isotropy" of the constants of 
the deformation potential b2 = 3b2• [ 6J It corre
sponds to the case when the splitting of the band 
does not depend on the direction of the stress. 

4. Fourfold degenerate level r 8 • If we choose 
as the basis functions <P~ 2 > (m = ± %, ±11:!), then 
the matrix D' takes the form [ 6 J 

c· D.12' D1a' 

0 ) D.'* -Du' 0 D1a' D'- 1- (55) - D13* 0 -Du' -Dl2' ' 
0 D '* - Dl2'* Du' 13 

where 

Du'= 1hb(e.u+Byy-2ezz), D1z'= -d(eyz+i3xz), 
D131 = 1!2YM(exx- Eyy) - idexy; (56) 

D' is determined in the same way as in the case 
of the representations r 4 and r 5, by two constants 
of the deformation potential b and d. 

The functions <P~/Zl were chosen such[ SJ that 
under time reversal ® they go over into one an
other as follows: 

e e:J =- c;,) 
t:p -';, c:p 'h' (57) 

We see that the matrix D' is invariant to such a 
transformation of the basis functions, and there
fore for any deformation double degeneracy of the 
levels remains when '11 and ®'IJ describe a state 
with one energy. The operation ® corresponds to 
the following transformation of the functions fi: 

/1-+-/4, /2-+/3*, /3-+-/z*, /4-+/j*. (58) 

Since in our case fs = <PoCs and <Po is real, this 
transformation corresponds to the following trans
formation of the coefficients Ci: 

C~-+--C4, C2-+C/, C3-+-Cz*, C4-+C1*. (59) 

As a result of the remaining double degeneracy 
of the level, the system (24) cannot determine the 
coefficients Ci uniquely, and it is therefore more 
convenient to consider in this case D.E in place of 
the system (24). Using (32) and the form of the ma
trix D' for D. E, we can obtain 

t:.E = - 3/2a2 (Sa + 2S!z)<c:po4 ) 

- 3M2 (c:po4)(Su- S1z) (a2 + 132 ) 

- 'hcP.:q;o">S44(V2 +161 2), 

where 

u. ~ 1Cd 2 + IC•I 2 ·-1Czl 2 -IC31 2 , 

v- 2Im(C~·c3 + Cz*C,), 

(60) 

[) =e 2Be (C1*C3 + Cz*C,), 8 = 2(C1"C2- C3"C•). (61) 

As expected, D.E is determined not by all the co
efficients Ci and cj', but only by certain combina
tions (61) that are invariant to the transformation 
(59). 

Minimizing D.E with respect to a, {3, y, and o 
under the normalization condition 

,~1Cd 2 =a2 +132 +V2 + 161 2, 

i 

we obtain two solutions. The first is of the form 
0! 2 + {3 2 = 1, 'Y = 0 = 0, 

!J.E = - 3/za2 (Su + 2Su) (t:po4) - 3/4b2( qJo4) (Su - S12), (62) 

i.e., the quantities a and {3 are not determined 
uniquely, and their ratio can be arbitrary. This 
case corresponds to the deformation 

exx- Byy = -(qJo4>(Su- s!2)l'3b[), 
Exx +eyy- 2~z = -3(c:po4)b(S11 - S1z)a. (63) 

The second solution has the form 

'f+ll'll 2 =1, a=[)=O, 
t:.E = - 3/za2 (Su + 2Siz)<c:po4)- 1/ziP(c:po4)S44. (64) 

For this case the shear components of the defor
mation differ from zero 
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exy = d(~o" >S .. y, ~z = d(cpo") Re 6, 
Bxz = -( (jlo4 )S,..d lm 6. 

also perturbation theory, requiring satisfaction of 
(65) the inequalities 

Both solutions for the level r 8 correspond to a 
crystal deformation whose magnitude is specified 
by means of the relations 

(Bxx- i;;y)2 + (Bxx- Bzz>2 + (Byy- Ezz) 2 

- -
exl + exi + eyi = Cf-(cpo") 2S.,.2, 

but whose direction is arbitrary and is determined 
by the relation between a, {3, or y, Re o, Im o. 
Thus, here, as in the case of the levels r 4 and r 5, 

a specific degeneracy in the strain sets in, but un
like the levels r4 and rs. where a finite number of 
states corresponds to each energy, there is a con
tinuous set of states with one energy, having dif
ferent strain directions. This case is similar to 
the case of a "ring" or "sphere" in the band 
structure, when the extremum of the band is re
alized not at isolated points of the Brillouin zone, 
but along an entire line or even along the surface 
of the extrema. If the condition 2d2S44 = 3b2(S11 - Sd 
is satisfied, then again the energies for both solu
tions coincide, and the splitting is thus independent 
of the type of deformation. 

3. Let us consider the order of magnitude of the 
Jahn-Teller effect in semiconductors and the cri
teria for the applicability of the obtained results. 
For estimates, let us consider the solution a) for 
levels r4 and rs at 0' = 0 and in the isotropic ap
e_roxiil2_ation (39). From (49) we have for .6.E' when 
C44 ~ Cu 

IF d2yoao3 

!1E' =- 2d2S.,. <cpo"> ~ - --=- <cpo"> =---_-· , (66) 
3C.,. 3C,.. 

where a0 = 1/r and r is the average radius of the 
electron state. The dimensionless factor y 0 de
pends on the detailed form of the wave function 
( cpg). From (66) we see that the magnitude of the 
effect increases strongly, like r-3, with decreasing 
radius of the electronic state, i.e., the Jahn-Teller 
effect is maximal for the deepest levels. For an 
order-of-magnitude estimate of .6.E' we obtain from 
(66), recognizing that C 44n0 and d are of the order 
of the atomic energy (Q0 is the unit-cell volume), 

d Qo 
!1E ~ ---

3 Vo' 
(67) 

V0 is the volume occupied by the wave function of 
the impurity center. 

Let us consider first the criteria for the applica
bility of the results. We used in the calculations the 
effective-mass method, the theory of elasticity, and 

(68) 

a0 is the lattice constant. In our analysis the in
teraction between the impurity ion and the lattice 
was regarded as an interaction with an elastic an
isotropic medium which is under stationary condi
tions. In this approximation we found that in the 
general case a Jahn-Teller splitting of the degen
erate level of the impurity center always takes 
place. It is known, however, that owing to the pres
ence of zero-point oscillations, even at absolute 
zero temperature, the approximation of the immo
bile lattice is not always valid. The lattice oscil
lation frequencies that are important in our prob
lem are of the order of wao· The immobile-lattice 
approximation is valid in the case when the fre
quency of the electron of the impurity center 
.6.E/li greatly exceeds wa0 , i.e., the adiabaticity 
criterion must be satisfied: 

(69) 

The lattice vibrations give rise to transitions of 
the electrons both between different equivalent con
figurations (with one value of .6.E) and between 
states with different types of deformation (with dif
ferent values of .6.E). Such transitions are accom
panied by reorientation of the deformation, and if 
their intensity is sufficiently large, they can lead 
to a strong mixing of the states with different de
formation and in final analysis to a vanishing of 
the Jahn-Teller effect. However, for the re-orien
tation of the deformation even within an equivalent 
configuration, the energy required is of the order 
of .6.E, and therefore the transition probability w 
is exponentially small when condition (69) is satis
fied: w ~ exp ( -.6-E/liwa ). In this connection, the 
adiabaticity condition (69~ ensures the existence of 
a static Jahn-Teller coefficient for a sufficiently 
low temperature. 

A unique situation arises when states exist with 
continuous distribution of the deformations, for 
example in the case of the levels r 3 and r 8• In 
this case arbitrarily close states are possible, 
with arbitrarily low re-orientation energy. For 
such close states, the adiabaticity condition is not 
satisfied and the transitions between them are not 
exponentially small. Therefore intense transitions 
take place between such states and a continuous re
orientation of the deformation takes place inside 
the states belonging to the same energy .6.E. How
ever, under the condition (69) the phonons cannot 
destroy the entire aggregate of states as a whole, 
for this calls for, as before, an energy on the order 
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of .t:.E, and the probability of such a process is ex
ponentially small, therefore in this case under con
dition (69) there exists a Jahn-Teller splitting of 
the impurity centers. 

We note also that condition (69) is simulta
neously also the criterion for a strong coupling of 
the impurity-center electrons with the lattice. If 
.t:.E/nwa0 < 1, then the coupling is weak and the 
electron-phonon interaction can be considered by 
perturbation theory. We note in this connection 
that this situation here recalls to a certain degree 
the case of large-radius polarons in the strong
coupling approximation, [ 7] where satisfaction of a 
criterion of the type (69) is also required, and the 
role of ~E is played by the polaron shift. 

Let us consider now the satisfaction of the adia
baticity criterion (69) for semiconductors. The 
ionization energy E0 in semiconductors ranges 
from 0.1 to 0.2-0.3 eV. Taking a value E0 ~ 0.08 eV 
and estimating a0 from the hydrogenlike model, 
a 0 = 2E E0 /e2 (where E is the dielectric constant, 
E ~ 10), we obtain a0 ~ 107 cm-1; for d~ 5 eV, 
'Yo~ 0.2, Cz ~ 3 x 105 em/sec, and P""' 2 g/cm3 we 
have ~E/nwa0 """ 8. These values of the parameters 
correspond to ~E'~ 0.015 eV for a= 0. We see 
also that under these conditions the criteria (68) 
are also satisfied. The foregoing estimates point 
to a real possibility of the existence of a Jahn
Teller effect in semiconductors. 

In conclusion the author thanks G. E. Pikus for 
a discussion of the work and for reviewing the 

manuscript, and V. L. Gurevich for a discussion of 
the work. 
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