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Transverse galvanomagnetic quantum phenomena in a thin semiconducting film are studied by 
the density matrix technique. Quantization of the transverse electron motion in the film is 
taken into account. Electron scattering is taken into account by perturbation theory methods. 
It is found that the dissipative current along the film depends on the applied electric field in a 
nonanalytic manner in the vicinity of zero, I""' exp ( -1/2E2), and hence, in contrast to bulky 
semiconductors, Ohm's law does not hold in a thin semiconducting film. A monotonic depend
ence of the current on the magnetic field strength is obtained, the current decreasing exponen
tially at large magnetic field strengths. It is shown that the dissipative current increases when 
the film thickness is decreased. The Hall current is found to be the same as that in a bulky 
semiconductor. 

THIS paper is devoted to an analysis of trans
verse galvanomagnetic phenomena in thin semicon
ducting films in strong magnetic fields. The mag
netic fields 3e are assumed to be so strong that the 
relations 

(1) 

are satisfied ( w = e::Je /m *c is the cyclotron fre
quency and T is the relaxation time of the electron 
in the film). When conditions (1) are satisfied, the 
quantization of the electron motion in the magnetic 
field is significant and consequently Boltzmann's 
kinetic equation does not hold. 

A similar problem for a bulky sample was first 
considered by Titeica. [ u. A rigorous quantum the
ory on the basis of the solution of the equation for 
the density matrix was proposed by Adams and Hol
stein. [ 2] They have shown that if the cttrrent flows 
along the magnetic field, Ohm's law is satisfied at 
least in weak fields. In semiconductors (non-degen
erate gas), when one magnetic level is filled, the 
electric resistance R increases in general with in
creasing ::Je. In particular, R""':Je 2 when the elec
tron is scattered by acoustic lattice vibrations and 
by point defects. 

On going over from a bulky semiconductor to a 
thin film, the transverse electron motion becomes 
quantized. Such a quantization leads to a specific 
dependence of the current on the electric and mag
netic fields, and also on the thickness (see below). 
The electron energy in the absence of external 

fields is determined by the quasimomentum projec
tion in the plane of the film and by a discrete quan
tum number N (E = E(kx, ky, N)). 

In a thin semiconducting film, it may turn out 
that the electrons populate only the state with 
N = 1. This takes place[ 3] at low densities n and 
at low temperatures: 

n < A I Lz3, kBT < Bfi2 I m* Lz2, (2) 

Here Lz is the thickness of the film, A and B are 
dimensionless quantities that depend on the dis
persion law: in the case of a quadratic dispersion 
law A ""' 10 and B ""' 50. When the state with N = 1 
is populated, the three-dimensional Brillouin zone 
reduces to a two-dimensional one. As a result, the 
motion of the electron in momentum space becomes 
planar, although the film itself remains a three
dimensional configuration, since Lz » a (a = lat
tice constant). 

We shall assume that the magnetic film is di
rected along the z axis and is perpendicular to the 
film, and that the electric field if is directed along 
the x axis. The magnetic field is described by a 
vector potential A(O, 3fx, 0). We assume that con
ditions (1) are satisfied, i.e., the quantization of 
motion in the magnetic field is significant. We as
sume further that condition (2) holds and that the 
distances between the film levels are so large (see 
(14) below) that only one sub-band (N = 1) is popu
lated, and transitions to other sub-bands under the 
influence of collisions can be neglected. Our prob-
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lem is to find the current in the plane on the film. 
The current component ly is the Hall current, and 
lx, as will be shown below, is due to dissipation. 
The analysis pertains to carriers of arbitrary sign. 
In the case of holes, e and w should be regarded 
as negative in all the expressions. Under the 
square root signs, however, w is always taken to 
be the absolute value. 

GENERAL RELATIONS FOR THE CURRENT 
DENSITY 

Condition (1) allows us to assume that the scat
tering potential V is small compared with the 
Hamiltonian H0 that includes the magnetic field. 
Therefore in the zeroth approximation the state of 
the electron can be regarded as stationary and an 
eigenstate for Ifo. However, the random charac
ter of the potential V causes the perturbed state 
not to be a pure state, and the electron system 
should be described by a density matrix. 

We include in H0 the potential Uf of the elec
tron in the film, and a term describing the inter
action in the electric field 

(3) 

where F = - e [g, Uf = U(z) can be regarded for 
concreteness as an infinitely deep well of width 
Lz, but actually the concrete form of U(z) is of no 
fundamental significance for what follows. The 
periodic potential in the film depends on x and y 
and is taken into account, as is customary in the 
effective-mass method, by introducing m*. 

The normalized solution and the spectrum of 
the Schrodinger equation with Hamiltonian (3) can 
be readily obtained in the form 

'I'M,"= --=-'¢(z)--=-eiky __ -<pM , (4) 1 1 1 {x- X11.0 ) 

1Lz 1Ly "Yl l 

EM, k = Eo + (M + 1/2) /i.w - Fxk0• 

Here M is the magnetic quantum number; the in
dex y of ky has been left out; the function ljJ (z) 
differs from zero in the interval (0, Lz) and is 
normalized to Lz in such a way that the mean 
value 11/J(z) I is equal to unity; it is assumed that 
Lx, Ly » Lz; the magnetic length is l = (n/m*)112; 

cpM is the M-th Hermite function; the center of the 
oscillations is x~ = -Z2k + F/m*w2, and E0 is the 
energy of the electron at the first film level 
(N = 1). 

From ( 4) we see that the stationary states are 
degenerate and that the factors that depend on x 
and z are real. Therefore the current along the 

x axis can appear only as a result of scattering. 
At the same time, the Hall current in the station
ary state assumes a constant value. 

The current density I can be written in terms 
of the average velocity: I = - env, where v = Tr(Vp) 
= vJ-t vPJ-t v, and PJ-t v are the elements of the density 
matrix, with Tr p = 1. 

The total Hamiltonian of one electron is written 
in the form 

We assume that the operator V depends only 
on the coordinates. Then 

" i " Px 
Vx = h[Hx] = m*' 

.. .. .. tt(a a) 
v- = ivx + Vy = -. -- i- + wx. m ax f)y 

Using the recurrence relations for the Hermite 
functions [ 4J 

-(x-xo a) ( - -[- <j)M 
l ax 

x-x0 ) 

l ' ' 

(5) 

- ( X - XO ) ( X - XO {) ) ( X - XO ). "}12M <j)M-1 = + l- <j)M , 
' l l ax l 

(6) 

we obtain in the Ho representation the matrix ele
ments of the operator v-: 

As a result we get the following expression for the 
current density: 

]- = ly + ilx = enc ~- enwl ~ l'2 (M + 1) PM+!, k; M, k· 

M,k 

(8) 

CALCULATION• OF THE DENSITY MATRIX 

The quantum equation of motion for the density 
matrix is 

(9) 

where :H: is the total Hamiltonian (5). This Hamil
tonian does not take into account the thermostat 
processes responsible for the establishment of the 
specified temperature and preventing the electrons 
from becoming heated. It is usually assumed that 
this neglect is permissible for weak electric fields, 
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since the Joule heat j it is proportional to ft 2• In 
our case, however (see below), the current j is not 
proportional to (t, and remains close to zero up to 
sufficiently large fields ( S' 0). Therefore the ap
proximation considered is valid up to fields rt 0• It 
is precisely this section of j ( S') which is of great
est interest. The results for stronger fields make 
no claim to any accuracy and are qualitative in 
character. 

We shall solve (9) by a method proposed by Kohn 
and Luttinger[ SJ and used by Adams and Holstein. [ 2J 

The stationary solution as t - "" does not depend 
on the choice of the initial conditions, since the in
formation contained in the initial matrix p (O) is 
completely lost as a result of the scattering proc
ess. We therefore choose for p(O) the equilibrium 

tial V. The linear term in G makes no contribu
tion to the current, owing to the random scatter
ing potential. We therefore confine ourselves to 
the quadratic term. Going in it to the limit as 
s - 0 and bearing (11) in mind, we finally obtain 
the following expression for the p matrix elements 
that make a contribution to the current (8): 

PM+!, h.; M, h. = ~:rt ~ V 111+1, h; A, h' VA, h'; M, h 

(!) .A,k' 

X{b [(M + 1-A)liw + Fl2 (k- k')](JM+t- /A) 

-6 [(M- A)liw + Fl2(k- k')](fM- /A)}. (13) 

In going to the limit we have omitted terms con
taining limits in the sense of the principal value o~ 
quantities of the type 1/(z- i Is I), since they do 

distribution function fM which obtains in a system not reverse sign upon time reversal or when 
without an electric fieldY PM, k; M'k' (O) = fMom,M'· s-- s, and therefore do not affect the magnitude 
In particular, fM can stand for the Boltzmann dis- of the current. 
tribution In electric and magnetic fields the o function 

From (9) we obtain an equation for the Laplace 
transform 

00 

.'f (s) = s ~ p (t) e-stdt, 
0 

in (13) expresses the law of electron energy con
servation. Unlike the case of a bulky semiconduc
tor, the 6-function argument does not contain the 
energy of motion of the electron along the z axis. 
Strictly speaking, the o function should also have 
as an argument the change in the energy of the 
film, but if this change is larger than the magnetic 

i A. A. 

ff(s)= p(O)--[Hf!'(s)]. 
lis 

(10) and electric energy, then the o function is equal to 
zero and the transitions between the different sub
bands are forbidden. Bearing in mind the criterion 
(1) andthat l(k-k')~ (Z 2m*kBT/n2) 112,wecan 
assume that it is permissible to neglect the transi
tions between the different sub-bands, at least if 

It is required to find .'T (0), since in the theory of 
Laplace transforms there is a limiting relation 
(see [ 6 J) 

limp (t) = lim fF (s). 
t--)-oo s~+O 

(11) 

We put 

Substituting f!'(s) in (10) and using (4), we write an 
exact expression for G(s): 

[ins+ (M'- M)liw + FP.(k'- k) ]GM, h.: M'. h•(s) 

= V M, h.; M', k•(iM•- !M) + LVG(s) ]M, h.; M', h'· (12) 

We seek a solution of (12) in powers of the poten-

1 )In the Kohn and Luttinger method, which is used below, it 
is assumed that there is no electric field at the initial instant, 
after which the field is turned on adiabatically. This deter
mines the choice of the initial distribution function, whereby the 
random scattering can be taken into account by perturbation the
ory. The subsequent use of the Laplace transform implies the 
use of this method of turning on the electric field. A detailed 
corroboration of the method is given in["]. 

the following condition is satisfied 

(14) 

Owing to the lack of degeneracy in our case, p can
not be expanded in powers of the electric field. The 
coefficients of the powers of f£ would contain de
rivatives of the o function, which make impossible 
any transitions between states and, as already 
noted, lead to the absence of current along the x 
axis. Consequently we can expect Ohm's law not to 
hold in the case of a thin semiconducting film. The 
results obtained below confirm this premise. 

CALCULATION OF THE CURRENT 

To find the current, we shall use formulas (8) 
and (13), and will go over with the aid of the recur
rence relations (6) to the indices M and A in the 
scattering matrix elements. If we put M + 1 = M ', 
the summation over M' can again be carried out 
from zero, i.e., the term in the sum correspond
ing to M' = 0 vanishes. We symmetrize these in-



NONLINEAR CURRENT IN A THIN SEMICONDUCTING FILM 357 

dices under the double summation sign. As a re
sult we obtain the expression 

fS enl2 
I-= enc-- i:rt- :3 (/M- /A)6[(ill- A)liw 

::Jf fi .\f, A, h, h' 

+Fl2(k- k')] ·{ (k- k') VM, k;A, e•VA, h'; M,h 

+ _!__[( av) v 11., h'; _,{, h 
2 OX .\I, h; A, h' 

- VM,k;A, h•( ~) J} · 
X A, h'; M, h 

(15) 

For convenience in the calculation of the matrix 
elements, we expand the potential V in a Fourier 
series 

For the matrix element we obtain 

VM,k;A,h' = ~ 6qu,h-h'vq(expiqxx)M,A· (16) 
qx, qy 

In (16), vq specifies the transitions between states 
in the absence of the fields: 

qx = kx -- kx', qy = k - k'. 

In the products of the matrix elements VM k- A k' 
' ' ' 

VA k'. M k we must put, owing to the random 
' ' ' character of the scattering potential, 

As a result we obtain 

V M, h; A, h' VA, k'; M, h = I: l>qy, k-k'l Vq 12 I (expiqxx)M, A 12• 

I (17) 

The other matrix elements in (15) are obtained 
similarly. 

We shall confine ourselves henceforth to the 
nondegenerate case, when the Boltzmann statistics 
are applicable. Since kBT < fiw, only one magnetic 
level will be populated in practice (fM = 0 when 
M -f 0), and therefore contributions to the current 
will be made by transitions from the zeroth mag
netic level to all the remaining levels (M = 0, 
A -f 0). Using the generating functions for the sys
tem of orthonormal Hermite functions, [ 41 we ob
tain for the matrix element the following expres
sion: 

1 
I (expiqxx)o,AI2= ZAA! [(lqy)2+(lqx)2]A 

X exp {- 1/d(lqy)2 + (lqx)2]}. (18) 

Now, summing in (15) over k' and qy, and then 
over k, and bearing (17) and (18) in mind, we ob
tain for the current density 

Owing to energy conservation, the momentum k 
changes by a definite amount qy = Afiw/ FZ 2 when 
the electron goes over to the magnetic level A. 
The scattering matrix element is taken in this case 
between states differing by qx and ely· The real 
part of the second term in (19) is odd relative to 
qx, since vq is always symmetrical in q. This 
term drops out after summing over qx. Thus, the 
scattering does not influence the Hall current, and 
ly is the same in our case as for a bulky sample 
regardless of the scattering mechanism: 

ly = enc fS / ::Je. ~20) 

DISCUSSION OF RESULTS 

Let us discuss our results as applied to dif
ferent scattering mechanisms. 

As seen from (19), the current along the elec
tric field is due to collisions and depends on the 
concrete scattering mechanism (the factor I vq_ 12). 

The value of vq does not depend explicitly on the 
electric or magnetic field, and is in general of the 
same order in the film as in a bulky sample, since 
we have eliminated the dimensional quantities. The 
dependence of vq_ on the magnetic and electric 
fields enters only via the value of q. 

In thin films, a large contribution is made to the 
scattering by collisions between electrons and 
point defects. It is important that in this case v q 
does not depend on the momentum transfer q. The 
same holds also for scattering of electrons by 
acoustic oscillations in a semiconductor at almost 
all temperatures (T > 1 °K). [ Tl This leads to the re
lation 

where T and J1 are respectively the relaxation 
time and the mobility of the electron in the film in 
the absence of an electric or magnetic field, and 
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the proportionality coefficient is y = na /6m* 
(see [ 81 ). 

We introduce the parameter (£ 0 
= (en)11 2(H/c)3/ 2/m*; &0 is the electric field in 
which the electron acquires an energy nw in a mag
netic unit path (e60 l =nw, lq=A6 0/0). For 
.JC ~ 10 5 Oe and m* = 0.1ffio, we have f£ 0 

~ 12 500 V/cm. For fields fC < 00 we can confine 
ourselves in (19), with a high degree of accuracy, 
to the first term of the sum in A. Integrating with 
respect to qx, we obtain for the dissipative cur
rent lx, in the case of scattering by point defects, 
the formula 

ye 1 
Ix =en-=---- - {e-2 + e-4{ exp ( -1/2 e2), 

2f2Jr/i2wlm* !-t 
(21) 

where the dimensionless parameter is E = fff I fff0• 

We see from (21) that lx is not an analytic func
tion of E, thus confirming the impossibility of ex
panding in powers of E, as predicted above on the 
basis of qualitative considerations. 

For weak electric fields, the current is close 
to zero up to 0.2, after which it begins to grow. 
Physically this dependence is determined by two 
factors: on the one hand, the displacement of the 
oscillator in one transition decreases with increas
ing field, and on the other hand the frequency of the 
transitions, determined in this case by expression 
(18) (vq does not depend on qy) increases contin
uously. 

lor; 
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Dependence of the dissipative current on the electric field 
in the scattering of electrons by point defects and acoustic 
lattice vibrations. The scale is in arbitrary units. 

For strong fields it is necessary to take into 
account in (19) several terms in the sum over A. 
The form of the obtained relation is shown in the 
figure. A similar dependence of the current on the 
field is obtained for the case of electron scatter
ing by acoustic lattice vibrations, because the ma
trix element vq is likewise independent of q. 

In the case when the current lx is due to scat
tering of electrons by ionized impurities, it is nee-

essary to put v q ~ q- 4 in (19). [ 21 The dependence 
of the matrix element on q causes the transition 
frequency to increase additionally with increasing 
field. After simple calculations we obtain 

Ix ~ exp (-1 /2e2) (22) 

in (22) we took account of transitions only to the 
nearest magnetic level. This is justified when 
E < 1. We see from (22) that the current increases 
monotonically with increasing field. 

The dependence of the current on the magnetic 
field is determined by expressions (21) and (22) 
and by the figure, since 3C ~ E - 213• This dependence 
will be different for different values of the electric 
field. In all cases, however, the current decreases 
monotonically with increasing field, going over for 
large fields into an exponential dependence. 

Ix ~ exp (-at/t3), a= eh/2m*c3f£2. (23) 

It follows from (21) that in scattering by point de
fects, the current is inversely proportional to the 
thickness of the film Lz, since J.t ~ r~ Lz. This is 
a feature common to all the scattering mechanisms, 
because the square of the modulus of the matrix 
element I vq 12 is inversely proportional to the vol
ume. It is of interest to compare this result with 
the dependence of the current on the thickness in 
the absence of a magnetic field. It was indicated in 
[ Sl that the current decreases with decreasing 
film thickness. In our case the opposite was ob
tained. The reason is that in the absence of a mag
netic field the scattering decreases the current, but 
in a strong magnetic field, as noted above, the 
electron scattering produces current. 

In conclusion let us estimate the currents for 
different scattering mechanisms. For pure films, 
where only scattering by acoustic oscillations is 
important, the mobility is [SJ 

and for E~ 1, n = 1018 cm-3, T ~ 4°K,3C~ 105 Oe, 
m* = 0.1m0 , Lz ~ 10-6 em, a coupling constant 
E1 ~ 3 eV, and a longitudinal-wave velocity cz 
~ 105 em/sec, the current per unit length due to 
scattering by the acoustic waves will be ~ 1 rnA. 
On the other hand, the current due to scattering by 
point defects (the case of relatively dirty films 
J.t ~ 103 cm3 /V-sec) will be ~ 0.1 A. Under these 
conditions, the Hall current is~ 1 A. 
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