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The effect of an electric and magnetic field on the light absorption coefficient in semiconduc
tors is considered. It is shown that the Franz-Keldysh effect occurs in a magnetic field when 
cEx/sHz > 1, where s = (Eg/2m) 112 and when the electron motion is infinite and the spectrum 
is continuous; in this case, when the magnetic field is increased, the absorption coefficient de
creases more rapidly with decreasing frequency than when H = 0. The spectrum is discrete 
for cEx/sHz < 1, and with increasing electric field the absorption edge shifts towards low, fre
quencies, and the possibility of the allowed transition decreases while that of the forbidden ones 
increases. 

1. INTRODUCTION 

As is well known, in a strong magnetic field the 
stated density of the electrons and holes has singu
larities near the edge of the Landau sub-bands. 
Oscillations of the absorption coefficient of light, 
connected with these singularities, were first ob
served in 1957.[ 1- 4 l Since that time, the study of 
magneto -optic effects-absorption, [ 1-sl reflec
tion, [ 10 l interband Faraday and Voigt effects[ 11 l

has become one of the most widely used and reli
able methods for investigating the band structure 
of semiconductors. Aronov[ 12 l has shown in 196 3, 
that measurement of the same effects in crossed 
electric and magnetic fields makes it possible to 
observe forbidden transitions and to determine 
separately, both from the distances between lines 
and from their shift in the electric field, the effec
tive masses and the g factors in each band, some
thing impossible in measurements in magnetic 
fields alone. This effect was observed in Ge by 
Vrehen and Lax. [ 13 • 14 l Lax[ 15 J noted in his review 
that the expressions given in [ 12 l are valid only in 
a sufficiently weak electric field, and that to solve 
the problem in the general case it is necessary to 
take into account the non-parabolicity of the bands. 
We shall show, however, that considerations ad
vanced in [ 15 l with regards to the behavior of the 
absorption coefficient in a strong electric field, 
are apparently in error. 

The change in the absorption coefficient in a 
strong electric field was theoretically predicted 
by Keldysh[ 16 l and by Franz[ 17 l in 1958, and was 
observed by now in many crystals~ 18 - 24 ] This ef
fect has already been the subject of a large number 

of theoretical [ 25 - 28 ] and experimental [ 18 - 24 ] papers. 
The influence of magnetic fields on the Franz
Keldysh effect, insofar as we know, has never been 
considered before. The purpose of the present 
study is to calculate the dependence of the light 
absorption coefficient connected with interband 
transitions, for an arbitrary ratio of the magnetic 
and electric fields. 

We consider here the simplest case, when both 
bands are not degenerate and have an extremum in 
the same point of k-space. In this case the two
band equation, as indicated in [ 29 - 31 l, can be re
duced to a form that differs from the Dirac equa
tion only in that c is replaced by 

(1) 

where E g is the width of the forbidden band, and 
m is either the effective mass for a spherical 
band or the reduced state-density mass 
(mxmymz)1/ 3 for an anisotropic band. In the lat
ter case the true fields E and H in the Dirac 
equation must be replaced by the reduced fields 

( m \';, 
E -'-E· --

'1,- t I' 
'm;; 

H-' = !_H ( m; )'/, 
' c '\ m ' 

(2) 

where Ei and Hi are the components of the fields 
along the axis of the given ellipsoid. By using a 
suitable transformation that also differs from the 
Lorentz transformations in that c is replaced by 
s, it is possible to eliminate in this equation the 
magnetic field when E' > H' in the moving coordi
nate system, and the electric field when E' < H'. 
Therefore the level quantization remains when 
E' < H' , and transitions take place between the 
Landau levels. The shift of the absorption edge in 
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the electric field is in this case connected with the 
fact that in the direct transitions, when the mo
mentum of the electron is conserved, the center of 
gravity of the oscillator shifts along the field and 
accordingly the energy required for the transition 
is reduced. In indirect transitions, to the contrary, 
when the position of the center of gravity of the 
oscillator does not change, the absorption edge 
shifts towards higher frequencies, as shown in [ 32 J. 

When E' > H', the motion of the electron is in
finite and no quantization takes place, while the 
shift of the absorption edge is due to the penetra
tion of the electron into the forbidden band-an ana
log of the quasiclassical penetration through a po
tential barrier. Therefore in the former case one 
should speak of the influence of the electric field 
on the magnetooptical transitions, and in the latter 
of the influence of the magnetic field on the Franz
Keldysh effect. We shall consider both cases be
low. 

2. THE FRANZ-KELDYSH EFFECT IN A 
MAGNETIC FIELD 

The two-band equation in crossed fields takes in 
the presence of an alternating field 

E~' = 2Eo' sin ( wot' - qor') (3) 

the form 

Je'¥ = {ms2p3 + p1s(P'u) - ecD'} '¥ = itziJ'¥ I at', (4) 

where 
e ' {} 

P;' = .Gfo;' +-A;', 
s 

:!P J = -iii--
t ox' ' 

s ( m )'/, 
A/=-A; --

c mi I 

(5) 

Here Pi and a i are the corresponding 4 x 4 ma
trices, [ 33 ] and 

(6) 

is the transformed amplitude, the projections of 

moving coordinate system will henceforth be des
ignated by unprimed indices. If we now go over to 
the k-representation, then in this coordinate sys
tem 

lie= ito+ .:-feint, ito= {ms2pa + r>~lis(ku) + ieEa I akx}, 

(7) 

:feint= ep!{(Aou)ei(wt-qr l + h.c.}, (8) 

where in accordance with the Lorentz transforma
tions and the chosen potential gauge 

A A I SE'' ox= Ox=- Ox, 
Wo 

cD = cDo' + ~Aoy' = 0 
(1- ~2)'!. ' 

Aoz = Aoz' = !__Eoz', 
Wo 

A _ Aoy' + ~cDo' = ( 1 _ ~2 ) 't. Ao ' 
Oy- (1- ~2)'/2 y 

= ( 1 - ~2 ) ''• __!_Eo/ 
wo 

and accordingly 
Wo 

w = (1- ~2)'/,' 
~ Wo 

qy= s (1-~2)'/,' 

(9) 

(10) 
We assume here that the photon momentum q0 in 
the stationary system of coordinates is equal to 
zero, neglecting by the same token the relativistic 
terms of order s/c. 

Just as in the calculation of the tunnel current 
in our earlier paper, [ 31J it is necessary, for the 
calculation of the probability of the interband opti
cal transitions, to go over to a representation de
scribing the state of the electron in the valence 
band and in the conduction band, for which pur
pose we carry out a transformation similar to the 
Foldy-Wouthuysen transformation. As shown in 
[ 31] , in the new representation 

~ f) 
Jeo = eiS(kJJeoe-iS(kJ = pams2'f] + ieE okx , (11) 

where 

(12) 

which are connected with the true values of the and 
field Eoi by relations similar to (2). For the alter
nating components A' = 2A~ cos (w0t'- Qo • r') and 
«~>~ = 2«1>~ cos (w0t' - q0 • r') we choose a gauge such where 
that «~>~ = 0 in the moving frame. In order for the 
magnetic field to vanish in this reference frame 
when E' > H', the velocity in the y direction, per
pendicular to the magnetic field E (llx) and H (liz) 
should be equal to {3s, where f3 = H' /E'. In this 
frame, the effective electric field is 

E = (E'2 - H'2 ) •;, = E' (1- ~2 ) 'i'. 

To abbreviate the notation, all the quantities in the 

We took account here of the fact that 

ei q; F (k) = F (k + q) eiq~. 

Here, according to [ 31 J, 

. ( TJ + 1 )'t. . ( uk) ( TJ - 1 )'t. e±tS(kJ = --- ± zp2 -- ---
, 2'1'] k 2TJ 

(13) 

(14) 

(15) 

(16) 
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We neglect in (11) the interband matrix elements 
proportional to E, as well as the small additional 
intraband term 

Mff = -eE 1'J - 1 . l~L 
21'] k2 . (17)* 

As will be shown in the appendix, allowance for 
this term has little effect on the absolute value of 
the absorption coefficient but the term o:Je must 
be taken into account when calculating its depend
ence on the light polarization direction.:_ 

The eigenfunctions of the operator :Je0 are 
h 

• X 

1¥11 . (k) = (eELx)-'hexp{-'- \ (ei- Eoi(k) )dkx} 
' eE o 

(18) 

Then, carrying out the integration, we find that 

1 ( ms)z ~ 1 
JM"''"''I 2 = :,- -fiE I (p,Ao(J)z,zl 2 "( ) 

~n , I (()x x0, y, z 

(23) 

where 

X 

qJ(x, y, z) =a~ ('YJ 1 + 1']2- 2~)dx, (24) 
0 

1')12 = 1- x2 + (y + u)2 + z2, 

1'] 22 = 1- x2 + (y- n)2 + z2. (25) 

The saddle point x0 is determined by the condition 
cp~(Xo) = 0, i.e., 

'YJ,(xo) + 1]2(xo)- 2~ = 0. (26) 

where Eoi are the eigenvalues of the energy at 
E = 0: 

The total number of transitions can be calcu
lated immediately in the moving system of coordi

(19) nates, since the product Vt remains invariant un
der the Lorentz transformations. To this end it is 

The index i = 1 pertains here to the valence band, 
and i = 2 to the conduction band, while J.li 
= (kyi kziE i• 1 i), with 1 i running through two values 
corresponding to the two values of the spin. The 
probability of the interband transition is 

where according to (13), (15), (18), and (10) 

Mp.,p., =.e 2J 'I'p.,*(k)~)t,t.''fl'p., (k + q) 
k 

-oo 

{. ms2 kx [ J } 
X exp t eli ~ 11 (k) + 11 (k + q) - ~~ dkx · 

0 ........__.. 
Here ( p1 Aou)1 1 are the inter band matrix ele-

1 2 

(20) 

(21) 

ments of the corresponding matrices. Since the 
~ 

matrix element (p 1A0 u)1112 has no singularities 

below the saddle point kxo, the integral in (21) can 
be calculated by the usual saddle-point method 
when a» 1 and fiw0 < E g· To this end we introduce 
the dimensionless variables 

m2s3 liw . fikx 
a= eEii' ~--···-· X=-~--, 

- 2ms2 ' ms 

li(ky + q/2) likz liq 
(22) y= z= ms' U=-=~~. 

ms 2ms 

*[aid= ax k. 

necessary to sum (20) over ky1• ky2• kzt. kz2, 11, 

and 12 and to integrate over E1 and E2• After sum
ming over ky2 and kz 2 and integrating over E2, we 
replace the summation over ky1 and kz 1 by inte
gration, which is then carried out by the saddle 
point method, while the integration with respect to 
E 1 yields eE Lx· We then obtain finally for the 
number of transitions per cm3 and per second 

(ms)' 
I=-;:- E";; S [<py" (xo, Yo, zo)<pz'' (xo, Yo, zo)]-'l•qJx"-1 (Xo, Yo, zo) 

'±:rte " 

X exp {- 2<p (xo, Yo, zo)}, (27) 

where 
r--" 

s = e 2 ~ I (p1Aoa) 2x=xo, y=yo, z=zo• (28) 
z,z, 

The saddle points y0 and z0 are determined 
from the vanishing of the first derivatives <P ~ and 
cp~. From (24) we find that z0 = 0, and Yo is de
termined from the equation 

(yo + u) arcsin Xo 
1'1 +(Yo+ u) 2 

+(Yo-u) arcsin xo = 0, 
1'1 +(Yo- u) 2 

the root of which is y0 = 0. According to (26) we 
have 

111 (xo, Yo, zo) = 112 (xo, Yo, zo) = ( 1 + u2 - Xo2) 'h = ~ (29) 

and consequently, according to (29) and (10), 

x02 = 1- ~2 (1- ~2) = 1- ~02 , Yo== zo = 0, (30) 

where 
~o = liwo I 2ms2• (31) 
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Formula (27) is valid so long as the saddle 
point kxo lies on the imaginary axis, i.e., so long 
as Xo is real. From (30) we see that the absorp
tion edge, i.e., the frequency w0 below which the 
absorption coefficient attenuates exponentially in 
accordance with (27) is determined by the condi
tion t.0 = 1 or liw0 = E g· Consequently, the absorp
tion edge does not shift in the magnetic field if the 
electric field is strong. According to (24), (25), 
(29), and (30) we have 

(/lx 11 (xo, Yo, zo) = 2a ( 1 - ~o2 ) t;, I~. 

{ ( 1 - ~02 )If, 
<py" (xo, Yo, zo) = 2a arcsin I.-e----,-

. 1+~2~2. 

(32) 

(33) 

(34) 

and according to (9) and (38) 

S = 2s2wo-2(1- ~2)e2Eo'2. (41) 

Consequently, in this approximation the aniso
tropy of the absorption coefficient, connected with 
I by the relation 

(42) 

is determined only by the anisotropy of the effec
tive masses. If the vector E0 is directed along the 
principal axis of the ellipsoid then, in accordance 
with (2), we have E~ 2/E~ = (m~/ mymz) 1/ 3, and ac
cording to (27) and (39)-(42) 

{ 812 ,1 xexp ---ao(i-~o)' 
3 

X [ 1 + · ~ ( 1 - ~0 ) ( 2~2 - ! ) ]} . (43) 

( 1- ~02 )1/, 
<p/' (x0, y0 , z0) = 2a arcsin . 1 + ~2~2 • (35) Thus, the relative change in the absorption coeffi

cient in the magnetic field is 
At the same point Xo. y0, and z0 we have in ac
cord with (16) 

. ( ~ + 1 J1
/' <J u + <JxXo ezS(x,, Yo±U, Zo) = -- + ip2 y ( 36) 

2~. [2~(~+1Ht, 

Consequently, in accordance with (14) and (36), the 
~ 

interband part of the operator (p 1 A0u) is equal to 

~ [ Aox<Yx 
(p,Aou) = p, ~-+ Aoy<Yy 

and from (28) 

S =2e2 { Aox2 (i ~2~2) + Aoy2 + Aoz2 (1- ~2 ) 

1+~o(1-~2) t;,+~2( 1-~oz) } 
x [(1- ~zrt, + ~ol2 ·--

(37) 

(38) 

When a(1-t.0) 7/ 2 « 1 we can expand (32)-(37) 
in powers of (1- t.0), retaining the first non
vanishing terms. Then 

<p(xo, Yo, Zo) = 4 I2 ao(1- ~o)'h 

X [ 1 + ~ (1- ~02) ( 2~2- ~) J, (39) 

ao = al'1 - ~2 = m 2s3 I eE'h, 

<px'' ( <py11<pz''fl' = 2 (2a) 2 ( 1 - ~0 ) ( 1 - ~2) '/, (40) 

a(H) 
---= exp 
a(O) 

We see from (43) and (44) that the relative 
change in the absorption coefficient in a magnetic 
field increases with increasing distance from the 
edge of the band, whereas near the absorption edge, 
i.e., at nw0 ~ E g• the magnetic field has practi
cally no effect. The advantage of measurements in 
crossed fields, compared with ordinary measure
ments of the Franz-Keldysh effect, may apparently 
consist primarily in the fact that in this case it is 
possible to determine simultaneously both the band 
parameters and the values of the field E, which 
are usually not given with sufficient accuracy by 
measurements in p-n junctions or in near-boundary 
layers. Therefore such a method may be of in
terest as a direct method for measuring these 
fields. 

In conclusion let us dwell briefly on the limits 
of applicability of the expressions derived above. 
The saddle-point method used in the integration of 
(23) and (27) is valid when cp~ » 1, c,o; » 1, and 
cp ~ » 1. The most stringent criterion is connected 
with the integration with respect to y and is of the 
form 

(45) 
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showing that the derived expressions become gen
erally speaking incorrect when {3 2 - 1. On the 
other hand, as in the calculation of the tunnel cur
rent, [ 311 the electric field must be strong enough 
to be able to neglect the energy uncertainty con
nected with the scattering of the electrons and 
holes: 

3. MAGNETO-OPTIC EFFECT IN CROSSED 
FIELDS 

If H' > E' in a coordinate system moving with 
velocity {3 s, where now {3 = E' /H' (as against 
H' /E' in Sec. 2), then the electric field vanishes 
and the magnetic field is 

H= (H'2 -E'2) 1h=H'(1-~2) 11'. (47) 

A= (0, Hx, 0), (48) 

and choose the gauge of the potentials of the light
wave field, as in Sec. 2, such that <1> 0 = 0 in the 
moving coordinate system. Then Eqs. (8)-(10) 
remain in force in this case, too. 

Since the wave function is the bispinor 'if = (X 1), 
Xz 

the equation 

(.Je- e)'¥= [ms2p3 + p1s(Pa)- e]'V = 0 (49) 

can be represented as two equations for x1 and x2: 

(ms2 - e)x1 + s(Pa)x2 = 0, (50a) 

- (ms2 + e)X2 + s(Pa)x1 = 0. (50b) 

Substituting x2 from (50b) in (50a), we get 

{( e )2 en } 8 2 -m2s4 
p +-:-A; +- (aH) X= 2 X· 

' ~ ' s s 
(51) 

(In (51) we have left out the subscript of X, since 
(51) is valid for both x1 and x2).\ This equation 
differs from the usual Pauli equation only in that 
E - ms2 is replaced by (E 2 - m 2s 4) /2ms2. We recall 
that here all the energies are measured from the 
center of the forbidden band. Since H = Hz and 
C1 z is a diagonal matrix, the eigenvalues and the 
eigenfunctions of (51) are : [ 341 

(52) 

e2,1 = ± [ (ms2) 2 + (nskz)2 + 2/iesH ( n + { + ~) r: (53) 

where cp 01 is the eigenfunction of the matrix cr z, 

01 = ± 1 is the spin index, and <I>n(x) is the nor
malized functions of the harmonic oscillator, 
x0 - riuky-position of center of gravity of the os
cillator and riu = hs/eH, the indices 1 and 2 per
tain to the number of the band, and f.l is the aggre
gate of the quantum numbers (n, 01, ky, kz)· 

The wave functions for the carriers in a given 
band should be chosen such as to go over to the 
correct wave functions at the bottom of the band, 
i.e., such that x2 --o for 'il 2 when p-0 and 
x1 - 0 when p-- 0 for 'il1. Then we obtain from 
(50a), (50b), (52) and (53), taking the normalization 
conditions into account, 

s(Pcr) 
----~ 

1 _ ( 81 - ms2 y/, ms2 - e1 
x(~~!, 'lj- ---

2e1 
(54) 

1 

1 

( 82 + ms2 )
1
'' x(~,). 'l'z= 

\ 2e2 s(Pcr) 
------~-

ms2 + ez 

According to (8), the matrix element of the 
transition from the state f.lt of the valence band to 
the state f.lz of the conduction band is, in the mov
ing system of coordinates, 

M12i = <'l'zl e,p1A;cr;e-iqrl'¥1), (56) 

and, substituting in (56), (54), and (55), we obtain 

[ (e2 + ms2) (ei- ms2) ] 11' { M12; = eA, , <x(~t•llcr;e-i'Irlx('",i) 
4eJe2 

- 82 <x(~"•ll (Pcr)cr;e-W(Pcr) lx(~~l>}. 
(ms2 - e1) (ms2 + ez) 

(57) 
The second term in (57) is of the order of 

(ps/2m2) 2 ~ .6.E/2ms2, where .6.E is the character
istic distance from the given level to the edge of 
the corresponding band. Therefore for transitions 
between levels with not very large n, this term 
can be neglected. Then, calculating the integrals 
which enter in (57), and recognizing that q x = qz 
- 0 and qy = q, we obtain 

I M12i 12 = e2 1 <cpa, I cr;A;j cpa) 12 1 Qm1i':z1(;~,'~,,) ( ao2/2) 12 

Here Q is the Leguerre function normalized to 
unity, and 

(58) 

(58a) 

From (58) we see that in the isotropic case, at 
polarizations parallel to x and y, the selection 
rules with respect to the spin are of the form 
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D..a = ± 1, and D..a = 0 for polarization of light along 
the z axis. From (58) we see also that in crossed 
fields, when ao f- 0, there are no selection rules 
with respect to the Landau quantum number, as was 
found in [ 121 • The number of transitions per cm3 

per second, which is invariant against the Lorentz 
transformations, is 

1 .+co 
1=-2--2 ~ IM12I 2 ~ dk.6(/iw-e2+e1). (59) 

rtrm n,, n, -oo 

a1, a2 

From (9) and (59) it follows immediately that 
the transition probabilities for different polariza
tions are related like 

IM12YI 2/ IM12xl 2 = 1- ~2 , IM12xl 2 = IM12zl 2. (60) 

The dependence on the electric field will be de
termined by the function I Q 12 from (58). From the 
energy conservation law it follows that transitions 
are possible only between states for which 

nw = [ (ms2)2 + (nskz)2 + 2/iesH (n1 + 1/2 + a1 I 2) ]'/' 

+ [(ms2) 2 + (nskz) 2+2nesH(n2+ 1/2+,a2f2)J'I'. 
(61) 

Since in a magnetic field the density of the 
states has singularities at kz = 0, it follows from 
(61) and (10) that the positions of the absorption 
maxima is determined by the condition 

nwo= (1-~2)'"{[(ms2)2 

+ 2nesl1'(1- ~2)'"(n1 + 1l2 + a1 I 2) ]'" 

+ [ (ms2)2 + 2nesiJ'(1- ~2)'h(n2 + 1l2 + a2l 2) ]'/'}. 
(62) 

Consequently, for transitions between levels 
with small n we have 

{ e!J' ( 1 a1) nwo = (1- ~2)'h 2ms2 + n- (1- ~2)'" nl +- + -. 
ms \ 2 2 · 

e!J' 1 ( 1 U2 )} +n- (1- ~2 ) ,, n2+--+- . 
ms 2 2 

(63) 

For small {3, formula (63) differs from the ex
pression given in [ 121 in that it takes into account 
not only the shift of all the levels, but also the de
crease in the distance between them with increas
ing electric field. In strong fields, when f3- 1, 
the energy difference for given ky, k z and n1, n2 

tends to zero like (1- {3 2) 1/ 2, and the distances be
tween the Landau levels, and accordingly the cy
clotron frequency we, decrease and also tend to 
zero like (1 - {3 2). Since a- oo when f3 - 1, the 
probability of transition between given levels de
creases rapidly. The decrease in the transition 
probability, as a result of the shift D..:xo of the cen-

2 ter of the oscillator is rmq = rmao. According to 
(63), for small n 

where 

we' = e!J' I ms. 

When f3 « 1 this formula goes over into the ex
pression given in [ 121 • We see that with increasing 
f3 the value of ao increases more rapidly than {3 2' 

owing to the decrease in the denominator. When 
f3 - 1 this effect is significant, and failure to allow 
for it and for the non-parabolicity effect have led 
the author of [ 361 to incorrect conclusions. 

It follows from (58) that the entire analysis of 
the dependence of I M 12 l2 on a0 , given in [ 121 , is 
fully valid in the general case. Thus, the number 
of zeroes on the I M 12 (ao) 12 curve, as follows from 
the properties of Leguerre functions, is equal to 
the smaller of the quantum numbers n1 or n2• The 
transition probability decreases with increasing a0 

like exp (-a& /2) for small n, and like 1/a0 for 
large n. 

As indicated earlier, the appearance of forbidden 
transitions is connected with the shift of the cen
ters of the oscillators on going from band to band. 
In the moving frame this shift is connected with 
the change in the wave vector ky as a result of 
the Doppler increase in the wave vector of light, 
just as the shift in the resonant frequency is con
nected with the Doppler change of the frequency of 
light. In a stationary coordinate system, the tran
sitions take place without a change in the electron 
momentum ky, but the centers of gravity of the 
oscillators, for a given ky, shift in both bands in 
opposite directions in the electric field. 

We note that the shift of the terms and the de
crease of the transition probability in crossed 
fields can be of great importance, for example, in 
the analysis of the operation of a semiconductor 
laser in a magnetic field. Under the operating con
ditions of the laser, the fields in the p-n junction 
are weak, [ 371 and the case H' > E' is realized in 
magnetic fields of the order of 104 Oe, but the field 
E' is still sufficiently strong. Therefore in a 
transverse field a decrease in the transition prob
ability can lead to an increase in the threshold cur
rent, whereas in a longitudinal magnetic field, 
where this effect is missing, the threshold current 
will decrease. 

In conclusion the authors thank A. I. Ansel 'm, 
G. L. Bir, V. L. Gurevich, L. V. Keldysh, .and B. D. 
La1khtman for useful advice during the discussions. 
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APPENDIX 

DEPENDENCE OF THE ABSORPTION COEFFI
CIENT ON THE POLARIZATION DffiECTION 

As follows from (43), accurate to higher terms 
of the expansion in the quantity 6 = (Eg- nw)/Eg, 
the dependence of the absorption coefficient on the 
polarization is determined only by the anisotropy 
of the effective masses. However, if we take into 
account the next higher terms in the expansion of 
[<p~(<py<f'z) 1 1 2 ]- 1 in powers of 6, then the ratio of 
the absorption coefficients turns out to be different 
from unity even in the spherical case. Thus, when 
account is taken of the terms of first order in 6, 
this ratio, according to (33)-(35), (38), is equal to 

ax':ay':az'=(1+2o):1: [1+ [ 1 +( 14~6~2 )'~2)2 ]. 

(A.l) 
The intraband term (17) also leads to aniso

tropy of the absorption coefficient. To take this 
term into account, it is necessary to diagonalize 
::;e; with accuracy to the interband terms, for which, 
as in [ 311 , we can use the transformation 
T = eiS, where 

S = - i ~tan -t kz . 
2 ky 

As a result we obtain an equation that coincides 
with Eq. (18) of [ 311 , which takes into account the 
"spin" splitting of the levels in the electric field 
when k =f 0. The perturbation operator (13) actually 
does not change in the new representation, since 
according to (30) its value is taken at the point 
kz = 0. Then, for transitions without spin flip, i.e., 
when Aollz, the absorption coefficient remains the 
same as before, since the transition energy does 
not change. For transitions with spin flip, there 
appears in the exponential the additional terms 

h k 

{ ~"' 'I'J- 1 kj_ [ ( 'I'J - 1 kj_' ] } 
-1- i ---dkx+ J --- --dkx . 

0 2'1'j k2 
0 2Tj k'2 k'=kH 

(A.2) 

It is further necessary to integrate this expres
sion with respect to kx, substitute the significant 
values of ky and kz and expand the value obtained 
for the transition probability with allowance for 
(A.2) in powers of 6. These calculations lead to 
the following relation for the absorption coeffi
cients: 

[ ~2(1-~2)6 ] 
a~.Y : az'' = 1 +1 [i + (1 _ ~2 ) 'l2)2 : 1. (A. 3) 

Simultaneous allowance for both effects in ac
cord with (A.l) and (A. 3) leads to the following 

ratio of the absorption coefficients 

{ ~2 ( 1 - ~2) 6 } 
Ux : Uy : Uz = 1 + 26 + (i + (1 _ ~2) 'lzj2 

·{ ~2(1-~2)6 I.{L 4Wo } 
. 1 + [1 +(1- ~2)'12f f· + [1 +(1- ~2)'12)2 

(A.4) 

From (A.4) we see that the absorption coefficient 
turns out to be anisotropic also when H = 0: 

ax: Uy: Uz = (1 + 2o) : 1: L (A.5) 

From (A.4) and (A. 5) it follows that the aniso
tropy of the Franz-Keldysh effect, both in a mag
netic field and without one, is determined in prac
tice by the anisotropy of the effective masses and 
is small for spherical bands, vanishing on ap
proaching the absorption edge. 
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