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The causes of errors in radiant power measurements are analyzed for both natural and artificial 
sources. The potential accuracy of isotropic-radiation temperature measurements with nonideal 
detectors is ascertained. The maximum accuracy of radiant power measurements is found for low
divergence beams, and its dependence on the statistical properties of some artificial source types, 
on background temperature, and on the temperature and absorptive properties of detectors is 
learned. The radiation field is divided formally into classical and quantum parts. The feasibility 
of this decomposition is proved in the Appendix for statistical states described by Glauber's P 
representation of the density operator. 

1. INTRODUCTION 

FIELD fluctuations are the principal cause of ac
curacy limitations on measurements of quantities 
pertaining to electromagnetic fields. In modern 
terminology these fluctuations are divided into 
quantum and wave fluctuations. The former result 
from noncommutation of field operators. The as
sociated limitation on measurement accuracy is 
usually interpreted in classical language as the re
sult of additive noise that is always present in a 
radiation field. However, this is not an exhaustive 
interpretation for the general case, and it can be 
applied to specific problems only on the basis of 
additional assumptions. 

The wave fluctuations, on the other hand, are 
associated with randomness of the field-generating 
sources and should be absent from the radiation 
emitted by determinate sources. Radiation from 
such sources is customarily designated as coher
ent, in contrast with the sources of incoherent 
(such as thermal) fields that are generated by the 
random motion of microscopic charges. Following 
Glauber, [ 1- 3J the term "coherence" is here used 
in an unusually narrow sense that embraces the 
behavior of both second and higher moments of 
fields. 

Radiation emitted by artificial sources occupies 
an intermediate position between completely co
herent and completely incoherent radiation, and 
can approximate either type, depending on the de
sign and operation of the emitters. For example, 
a stable gas laser operating in the fundamental 
resonator mode emits a field that appears to be 
very close to the coherent type, whereas multi-

mode emission can in many instances belong to the 
random type with respect to its statistical proper
ties. 

Until recently the division into wave and quan
tum fluctuations was largely heuristic. [ 4J An im
portant advance in the understanding of radiation 
fluctuations was the method, proposed by Glau-
ber [ 2 J and by Sudarshan, [ 5 J of presenting the field 
density operator p as the basis of the so-called 
coherent states (eigenstates of the fraction of field 
operators representing photon annihilation). The 
main result of this concept was the important con
clusion that mean values of normal products of the 
field operators correspond to the moments of some 
classical field; these moments are calculated us
ing the "distribution function" given by the field 
density operator p. (Normal products of operators 
are those in which all photon annihilation operators 
stand to the right of the creation operators.) Since 
the normal products do not depend on the order of 
their factors, their association with classical ana
logs is unique, like the determination of a "distri
bution function" from the field density operator. 
We note, however, that this "distribution function" 
can lack some classical probability properties. 
For example, it can be negative at some points, 
and its use to calculate normal moments is to some 
extent a formal procedure. 

From the foregoing point of view it is reason
able to assume that the wave fluctuations of a field 
are described only by physical quantities that are 
the mean values of normal products (such as the 
mean rate of energy absorption). Moments not ex
pressed in terms of normal mean values, can be 
found if they are first converted to the normal 
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form by means of the field commutation relations. 
Any given moment thus becomes the sum of nor
mal moments of the initial order plus a linear 
combination of lower-order normal moments. It is 
reasonable to designate this linear combination as 
the contribution of quantum fluctuations to the 
mean value in which we are interested here. Thus 
quantum fluctuations depend, in the general case, 
on the order of the operators in the moment of 
present interest; therefore no description as addi
tive classical noise is adequate. 1> 

In the present work the approach to mean-value 
calculations of field operators differs from the 
aforediscussed procedure. It has been shown[6 J 

that the classical equations of electrodynamics can 
be used directly to calculate moments of any order 
consisting of thermal field operators. Both the 
quantum and wave fluctuations then result from 
beats between different frequencies in the classical 
field. A radiation signal often possesses statistics 
differing greatly from blackbody radiation statis
tics. A similar procedure can also be applied in 
such cases if for field moments in mixed states a 
symbolic formula is used, for which our derivation 
is given in the Appendix. 

In studying the problem of the accuracy of sig
nal measurements we shall employ the simplest 
criterion of detection, based on an evaluation of 
the signal-to.:.noise ratio. A signal increment will 
be considered detectable if its ratio to the mean 
square fluctuation exceeds unity. This is a quite 
reliable criterion, although it yields only qualita
tive results. 

The first part of the present paper discusses 
accuracy in the temperature measurement of ex
ternal equilibrium radiation by means of a non
ideal thermal detector having an arbitrary temper
ature and possessing an arbitrary dielectric con
stant. The result obtained here is compared with 
that given in [ 7J, where the analogous problem was 
investigated for an ideal (cooled and perfectly 
black) detector. The second part is devoted to the 
measurement of radiant power from a small 
source against an equilibrium radiation background 
of temperature T. The detector is again taken to 
be nonideal with a temperature T1. In studying ra
diation from nonthermal sources we confine our
selves to certain limiting cases for which the de
termination of detailed statistical properties is not 
necessary. 

1 )The Appendix contains some additional aspects of this 

question. 

2. ACCURACY OF THE TEMPERATURE 
MEASUREMENTS OF EXTERNAL 
EQUILIBRIUM RADIATION 

The cause considered here for errors in tem
perature measurements consists in fluctuations 
of the radiation exchanged between the detector 
and a cavity. Let a change t:. T of the cavity tern
perature T correspond to a change in the mean 
energy flux (I) that is represented by 

where 

M = !!To<I> I oT, 

liw3a 
<I>=---~ e!!uJ (n- n1), 

4:rt2C" 

n = n (T) = --- cth __('J__ - 1 ) 1 ( 1i . 
2 2kT I ' 

(1) 

(2)* 

n 1 = n(T1), u is the detector aperture, D.w is the 
high -frequency absorption band, E is the effi
ciency expressed in terms of the absorption coef
ficients Ai ( 11), which depend on the angle of inci
dence e and on the polarization (i = 1, ~): 

e = S (A1 + Az) cos 8 do/2:rt. (3) 

Substituting X= nw/~kT, we obtain from (1) and 
(2): 

According to the aforementioned criterion, the 
increment of the background temperature is de
tectable subject to fulfillment of the inequality 

M;;;:;, <Mz)'h. (5) 

An expression for (t:.I 2) was derived in [SJ: 

li2aw"e!!w!!Q 
(Mz>= . [(n+n 1 +2nnJ)+a(n-nJ)2], (6) 

4:rt3c2 

where 

a=~ (A 12 + A22)cos 8 do/ ~ (A,+ Az)cos 8 do, 

00 

!!Q = ~ jF(w) j 2 dw, (7) 
0 

F(w) is the low-frequency characteristic of the 
detector. Substituting (6) into (5), we obtain the 
maximum detectable temperature increment: 

!!T = 4l"n cT ( !!Q \ •;, sh2 x 

wiae !!w x 

X[a(n- n!) 2 + n + n1 + 2nnt]'l•. 

*cth"" coth. 
t sh"" sinh. 

(8) 



332 V. V. KARAVAEV 

We note that when A1 = A2 and the surface obeys 
Lambert's law we have A1 = E =a. 

As already mentioned, an expression for 6 T 
derived in [ 11 has the form 

D.T = 2"VncT (D.Q )''' shx 
w"Ya D.w x 

(9) 

in our notation and differs from (8) by a factor de
pending on T, T1o a, and €, which we denote by 
y. Z> Introducing f3 = ntfn, we obtain from (8) 
and (9) 

y = e-'1•{(1 + ~)- (1- ~) [1- (1- ~)a]e-2x}'h. (10) 

The topography of this function of x and f3 is rep
resented schematically in the accompanying fig
ure. 

It is easily seen that the sensitivity threshold 
calculated in [ Tl is the minimum possible thresh
old only for detectors obeying Lambert's law. In 
this case a = E, and we obtain y = 1 only if x = 0 
and f3 = 0. For real detectors the ratio a /E can 
be smaller than unity, but the accompanying gain 
of the signal-to-noise ratio is realizable only at 
sufficiently high radiation temperatures (x « 1). In 
all other cases a real detector has a lower than 
ideal sensitivity. For example, at low tempera
tures (x .G 1) for equal sensitivities it is required 
that the aperture of a real detector be larger than 
that of an ideal detector by at least the factor 1/€. 

3. SPATIALLY COHERENT SIGNALS 

Since the field that will be investigated is not 
assumed to be thermal we must first find a suit
able method of calculating moments for a field 
state representing the superposition of a thermal 
field and a signal field. Furthermore, we must 
select statistics that will describe satisfactorily 
the properties of the real signal type that concerns 
us here. 

Let the field be generated by two statistically 
independent sources such that when the first source 
is switched off the field state is described by the 
density operator p 2 , and by the operator P1 when 
the second source is switched off. 3> Then in a 
state corresponding to the simultaneous operation 
of both sources we have the following symbolic 
formula, which is derived in the Appendix, for the 

2)In the cited reference the coefficient 2 of Eq. (9) was 
omitted. 

3 lit will not be important henceforth to know exactly how 
the sources are switched off, since this could affect only the 
zero-point field a few wavelengths from a source. 

moments of the field operators: 

(A; ... An> = ( :( (A; 1 + A;2) ••• (An1 + An2) >t: >z. (11) 

Here the symbol ( ) 1 denotes averaging over the 
statistical operator p1 and applies only to the 
operators Af; the symbol (: :) 2 applies only to Al 
and denotes averaging of normal products over P2· 

The spectrum of power flux to the detector is 
expressed through fourth moments of the electric 

h 0 [ 6] and magnetic fields, or, as was s own m 
through fourth-order central moments of the 
space- and frequency-dependent Fourier compo
nents of the electric field E. These moments are 
denoted by the symbol ( ) 0 and are defined as 
follows: 

(EE'E1E{)0 == 114[ < (EE' + E'E) (EtEt' + Et'Et)) 

- (EE' + E' E)(E1E{ + E{ Et>]. 

Applying Eq. (11), we obtain in a mixed state 

( { }>o = <{} >ot + (:{ }:)oz + (EEt)+I(:E'E{:)z 

+ (EE{)+1(:E'E{:)z + (E'Et>+kEE{:)2 

+ (E'Et')+1(:EEt:)z, (12) 

where, for example (EEf)+1 = 1/2(EEf + EfE), and 
{} = EE'EtEf. 

We shall understand p1 to be the density opera
tor of the thermal field. For a state defined by 
this operator the second and fourth moments ap
pearing in ( 12) can be calculated by means of the 
classical field equations, and are given in [ 61• The 
field of the detected signal will be described by P2· 

In accordance with (12), the spectrum S(w) of 
power fluctuations in the detector output is the sum 

S(w) = S0 (ro) + St(ro) + Sz(w), (13) 

where So is the fluctuation spectrum in the ab
sence of a signal and corresponds to the first term 
on the right-hand side of (12). St results from the 
second term, and 82, which results from beats 
between the signal and thermal fields, corresponds 
to the last four terms in (12). We note that 82 does 
not vanish at zero temperature of the thermal 
sources. It then defines the so-called shot (or 
quantum) noise of the radiation and corresponds to 
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beats between the signal and the zero-point field 
of thermal emission. 

Each of the quantities S0, S1o and S2 depends 
essentially on the relations between the low
frequency passband ~n. the detector absorption 
band ~w. and the signal band ow. In studying real 
detectors operating in the very short wavelength 
region, we shall henceforth assume arbitrarily 
that 

(14) 

Under the first of these conditions we have, in ac
cordance with [ 6J, 

fi2w4ae~w 
S0(w) = F(w) --·--

8:n:3c2 

(15) 

If for the purpose of calculating S0 and S2 only 
the thermal and signal power spectra are required, 
then S1o corresponding to the second term in (12), 
depends essentially on the signal statistics, which 
we shall subsequently give using the aforemen
tioned classical analogs of signals (now to be ex
plained). 

The classical analog of a signal is a statistical 
ensemble of classical signals in which the mean 
values of the orders that concern us agree suffi
ciently accurately with the mean values of normal 
products for the quantum field. 4> 

In the present work we shall not be concerned 
with field moments higher than the fourth order. 
It will be seen that first and third moments drop 
out. Second moments make up the coherence ma
trix and can be obtained, at least in principle, by 
measuring band intensities with a Young interfer
ometer. The determination of higher moments 
generally requires an analysis of the source emis
sion mechanism or must be based on suitable ex
perimental results. We are thus far acquainted 
only with the Brown and Twiss type of experiments, 
which have yielded some information about the sta
tistical properties of the signal envelope. 

Under certain conditions a detailed analysis is 
not required. For example, a large class of quan
tum fields can be described by Gaussian classical 
analogs wherein all higher moments are expressed 
in terms of second moments. Furthermore, some 
types of artificial sources emit radiation having a 
very stable amplitude, as is known from the Brown 
and Twiss type of experiments. The only classical 

4 lThis analogy is not unique in general. Examples of 
quantum states without classical analogs can also be cited, 
although these are apparently not realized. 

analog of this field will be an oscillation with the 
time-dependent factor 

(1 + r(t)) cos (wt + <p(t) ), r<_ 1. 

If we confine ourselves to terms that are quadratic 
in r we shall subsequently find that the moments 
of energy terms do not depend on the distribution 
function of the corresponding signal. A further 
natural extension is the superposition of such os
cillations to describe the operation of a multimode 
laser, for example. When we assume independence 
of the modes we thus, of course, neglect their in
teractions, which are associated with nonlinear ef
fects in matter, and also their possible coupling 
through the pumping mechanism. 

We shall confine ourselves to the case of lin
early polarized radiation impinging normally on 
the detector and shall assume spatial coherence 
of the signal field throughout the aperture, i.e., 
the relation <50 « A.2/u is fulfilled for the solid an
gle of the source. 

We shall first consider the last term in (13), 
corresponding to beats between the thermal field 
and the signal; this term does not depend on the 
signal statistics, and is calculated by means of 
Eq. (35) of [ 6 J: 

S2(w) = -;_1:_ (' exp(-iw"r)'¥2(-r)d'r, 
2Jt .l 

X exp i[(w + w')t + (ul1 + w/)t' 

+ (x + x')r + (x1 + x1')r'l· 

X F ( w + w')F( w1 + (•lt') dw ... dwt' dx ... dxt' dr dr'.(16) 

Here E1 = EJ(K, w) and ET = ET(K, w) are the 
space- and frequency-dependent Fourier ampli
tudes of the incident field and the detectors' ther
mal field, respectively. Since the aperture is much 
smaller than the transverse correlation radius of 
the field and the process is stationary in time, the 
signal field is 

<ErEu)z = C(w)6(x)6(x1)6(w + wi), (17) 

and the correlation functions for the background 
and thermal field of the detector are [ 6 J 

fiw fiw 
<ErEu>+! = S:n:Zccos 8 cth 2ki 6(x + xi)6(w + w1), 

A (8) fiw fiw 
<ETETI>+i=-8 2--8-cthZkT 6(x+xi)6(w+w1) (18) 

:n: c cos 1 

Substituting (17) and (18) into (16), after a simple 
integration we obtain 
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Ahw [ ( 1 -A ) 1 J S2(w) = --;:~-IoiF(w) 12 2n 1 +-A-~ + -1 , (19) 
2n , · • 

where Io is the average power absorbed by the de
tector. 

The magnitude of S1 is determined by the sta
tistics of the signal. Since the signal field is in
dependent of the coordinates within the aperture 
we have from [ 6 J 

S1(cu) = ~ ~ cxp(-iwt) 1¥1(t)dr, 
2;t 

1¥1(r) = (~ r o2A2 ~ <ErEr'EuEu'>o2 
4rt. 

X cxp{i[(w+w'Jt+(wt-f-w/)t']} 

X F(c•J + w')F(ul1 + w!')dw ... dw/, (20) 

where Einc is the time-dependent Fourier ampli
tude of the signal field. In the calculation of (20) 
we shall consider the following simplest models of 
signals. 

4. NARROW-BAND (COMPARED WITH DETEC
TOR ABSORPTION BAND) RANDOM SIGNAL 
OF CONSTANT AMPLITUDE 

For this classical analog the power absorbed by 
a detector is constant in time and is proportional 
to 

~ E1Er' exp {i(w + w')t} F(w + w')dw dw', 

where F(w + w') vanishes when w and w' have 
like signs. In addition, S11 which describes the 
fluctuations of this power, also vanishes. This re
sult applies specifically to a sinusoidal signal, 
which can be assumed in the case of an ideally 
stabilized laser. 

5. NORMAL SIGNAL 

Applying to this case the known expression for 
the fourth moment of normally distributed classi
cal quantities, we obtain for the analogs 

(ErEr'EuEu'>o2 = (ErEu)2(Er'Eu')z 

(21) 

Since the process is stationary in time, we have 

(E1E 1')2 = C(w)6(w + w'), C(w) ~ 0. (22) 

Substituting this expression into (21) and also in 
(20), after an elementary calculation we obtain 

S!(w) = 2 ( o~c riF(w) 12 IC(w')C(w'- w)dw'. (23) 

For a low-frequency band, 

00 

flQ = ~ IF(w) l 2 dw~6w, 
0 

we can assume w = 0 in the integrand of (23), thus 
obtaining 

( oAc \ 2 f 
S1 (w) = 2 --) IF(w) 12 .l C2 (w)dw. 

, 4rt ~co 

We have not yet defined the signal band ow; we 
now write 

00 2 00 

6w = [ ~ C(w)dw J j ~ C2 (w)dw, 
-00 -00 

which enables us to put (24) into the form 

S1(w) = 2IF(w) l2fo2 I 6w. 

(24) 

(25) 

(26) 

For the mean square fluctuation we obtain from 
(26): 

(27) 

In the opposite case of a low-frequency broad band 
(.M2 » ow) we obtain 

(28) 

6. RANDOM NARROW-BAND PROCESS WITH 
SMALL FLUCTUATIONS OF THE ENVELOPE 

The radiation of a single-mode laser is de
scribed more accurately by this classical analog 
than by a signal of constant amplitude. The signal 
in the present case is 

Er=E(1+r), (29) 

where E is a frequency-modulated signal and 
r « 1. Neglecting the fourth power of r, we easily 
obtain from (20): 

(30) 

where R(w) is the power spectrum of the fluctua
tions of r(t) ((r(t)) = 0). 

For the mean square fluctuation in a band ~Q 
that is much narrower than the R(w) band we ob
tain5> 

(31) 

where the band width o' w for this case is defined 
as 

00 

6'ul = ~ R(w)dw/R(O), (32) 
0 

and v is the mean square degree of modulation: 
00 

v = (r2(t)> = ~ R(w)dw. (33) 

S)R(w) is assumed to be a continuous spectrum. 
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In the opposite case of a quite broad band ~Q 
» 6' w, the mean square fluctuation is given by 

(34) 

We note that R(w) in (30) is not expressed in 
terms of the signal spectrum for the general case. 
However, if amplitude modulation results from ad
ditive noise with the power spectrum D(w), the 
fluctuation spectrum will be 

( acA )2 ~ 
SJ((•>) = 4 - 4; . IF(w) 12 J"' C(w'- w)D(w')dw', (35) 

where C(w) is the signal spectrum. For a band 
b.Q that is much broader than C(w) or D(w) we 
obtain 

(36) 

and for a band b.Q that is very narrow in the same 
sense we have 

(37) 

The band width o" w and the degree of modulation 
v' are here defined by 

o"w = r C(w)dw r D(m)dw I r C(w)D(w)dw, 
-oo -oo -co 

v' = ~ JJ(m)dw I ~ C((J))dw. (38) 
-:x> -00 

7. SUM OF INDEPENDENT PROCESSES WITH 
STABLE AMPLITUDES AND DIFFERENT 
CENTRAL FREQUENCIES 

To some approximation this signal describes 
the situation in superheterodyne reception or mul
timode laser operation. We shall first consider 
two independent processes. It is obvious that when 
a low-frequency band b.Q exceeds the difference 
I w1 - w2 1 between the central frequencies of two 
oscillations, then S1 is determined mainly by beats 
with the difference frequency I w1 - w2 1. If the 
spectra of the two oscillations are here described 
by the same function C(w), we then easily obtain 

00 

X\ C(w')C(w' -I WJ- wzl-lwl )d(t)'. (39) 

The mean square fluctuation, which is the integral 
of (39) over all frequencies, is then 

(40) 

which equals approximately half of the corre
sponding quantity for a normal signal [Eq. (28)]. 

When the central frequency of low-frequency 
beats lies outside the band b.Q, then S1 is deter
mined only by beats between neighboring frequen
cies of each line. In this case [Eq. (30)] 

(41) 

The mean square fluctuation (.t.Ii) is defined as the 
ratio between b.Q and o'w and is given in the lim
iting cases by 

<tll12> = 2vlo2tlQ I o'(t), !:lQ ~ o' w, 

(42) 

The relative fluctuation is then one-half of that for 
a single narrow-band signal. 

A basis exists for assuming that fluctuations in 
separate laser modes can be coupled. A simul
taneous investigation of two coupled modes must 
involve the four-dimensional probability density 
distribution, whose form is unknown. However, 
the situation is simplified when b.Q « I w1 - u: 2 1 or 
~Q »I w1 - w2 1. In the first of these two cases the 
beat frequency is not passed through a low-fre
quency filter, so that fluctuations of the instan
taneous frequency are not reflected in the signal 
output. It is easily shown that then 

where R(w) is the cross-term power spectrum of 
r 1 and r 2• Specifically, for completely correlated 
amplitude fluctuations S1(w) = 4I5R(w) IF(u:)l2, 

which coincides with (30). 
When b.Q » I w1 - w21 the magnitude of S1 is de

termined by the fluctuations of the instantaneous 
frequencies in both oscillations. For completely 
correlated fluctuations of the instantaneous fre
quencies we obtain 

S1(w) = Jo2IF((•lt- wz) l26(lwl- !w1- wzl), (44) 

in contrast with (39) for independent fluctuations. 
The investigation of intermediate cases involves 
the two-dimensional distribution function of the in
stantaneous frequencies. For ~Q » I w1 - u:21 the 
mean square value (.t.I I) is independent of mode 
coupling and is given by (40). 

The extension to a larger number of independent 
oscillations leads to the quite obvious conclusion 
that when a few lines of C(w) are located inside 
the band ~Q, the signal distribution can be re
garded as normal, permitting use of the formulas 
in Sec. 5. If only one line of C (w) is located in-
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side this band, or only a part of a line, we obtain 
for the mean square fluctuation: 

(M,2) = 4fo2nQ I m6' w, nQ ~ 6' w, 

(MJ 2> = 4fo2 I m, nQ ~ o'w, (45) 

where m is the number of lines. 

8. ACCURACY OF POWER MEASUREMENTS 

Before writing a final expression for the error 
of signal power measurements, we introduce di
mensionless variables that characterize the power 
of the signal and background. The average number 
of photons traversing the aperture in the "build
up time" T = 1f /.6.Q for the band .6.Q of a low
frequency filter, will be denoted by M for the 
signal: 

M = nl0 I Aliw.nQ, 

and by N for the background: 

N = naw2nw I 4nc2nQ. 

Denoting by OM the minimum detectable change 
in the photon flux of the signal, we assume oM 
= (.6.M2) 112, as in the first part of the present arti
cle; here 

00 

(nM2) = nz ~ S(w)dwl (liw)2(nQ)2. (46) 

Substituting now the previously obtained expres
sions for So, S1, and Sz, we obtain 

(oM) 2 = N ~2 [n(a(1-~) 2 + 2~) + (1+~)] 

( 1-A ) +2Mn 1----~ +(M10)2, 
A , 

(47) 

where oM0 is the smallest detectable increment 
of the photon flux in the absence of a background 
when the detector temperature is zero (n = 0, 
{3 = 0): 

oMo = M(1 I A+ qM). (48) 

The factor q here depends only on the statistical 
properties of the signal. As we have seen previ
ously, for a signal of constant amplitude we have 
q = 0, for a signal with small amplitude fluctua
tions q = 4v.6.Q/O'w when .6.Q « o'w, and q = 4v 
when t,.Q » o'w. With decreasing band width of a 
normal signal, q approaches unity, while with 
broadening of this band q approaches the value 
MQ I ow. 

Equation (47) shows that the dependence of the 
minimum detectable flux on the signal statistics 
becomes significant only for measurements of 
quite strong narrow-band signals by means of de-

tectors having sufficiently high sensitivity (MA 
» 1). It can be assumed in the optical region that 
the type of statistics is important only for laser 
power measurements. 

The type of signal statistics is often not known 
with sufficient accuracy. In such instances the ef
fects of the background and detector emission can 
be taken into account through Eq. (47) if oM0 is 
known from the proper experiments. We shall con
fine ourselves here to an examination of the cases 
in which these effects are clearly small. For the 
sake of simplicity we shall consider only a detec
tor obeying Lambert's law. Then E =a =A and 
(47) becomes 

(6M) 2 =1V[n((1-~)2+ ~)+ 1:~J 

+ 2M n ( 1 + 1 A A ~) + (oM o) 2. (49) 

Let us first consider a detector having zero 
temperature ({3 = 0). Then for a very weak signal 
(MA « 1) with 

JV;;;::_M ( 1-2nA \ 
~ 1 +nA J 

the background can be neglected. On the other 
hand, for a sufficiently strong signal (MA » 1), 
instead of (50) we have 

JV;;;::_MA qM-2n 
~ An+ 1 · 

(50) 

(51) 

Let us assume, furthermore, that there is no 
thermal background but that the detector has a 
finite temperature T 1 (n- 0, {3 - oo, n1 = 
1/ 2 [coth (liw/2kT1) - 1)). It then follows from (49) 
that the detector temperature effect can be ne
glected when for a weak signal we have fulfillment 
of the condition 

(52) 

and for a strong signal 

(53) 

In (52) and (53), N1 is the value of N taken at the 
detector temperature T 1. 

Finally, when the detector is in equilibrium 
with the background, we substitute {3 = 1 in (49); 
then instead of (50)-(53) we have for weak and 
strong signals, respectively, 

N~M(1- 2N) / :?(n + 1), 

N~M(qAM- 2) I 2(n + 1). (54) 
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APPENDIX 

CALCULATION OF FIELD MOMENTS FOR A 
MIXTURE OF INDEPENDENT STATES 

To prove the symbolic relation (11) we shall 
use some results given in [ 21 . As already men
tioned, it was there shown that the mean values of 
the normal products of field operators can be cal
culated from classical formulas if we use the 
"distribution function" represented by the state 
density operator. We are interested in calculating 
mean values of the form (Ai ... An), where the 
field operators are not normally ordered. With 
application to the present work in mind, we as
sume the Az to be Hermitian operators. In a 
microscopic analysis we encounter mean values of 
the field amplitudes for both positive and negative 
frequencies. However, no use is made of Hermi
ticity in the derivation that follows; therefore (11) 
will apply to moments of the given type. 

It is always possible by means of commutation 
relations to reduce any given moment to a sum of 
normal moments down to the first order: 

/A· A>-~<·A· A·> ' 1 .. • n - L:. CJI< • J... k • , (55) 
jk. 

where Cjk are determinate numbers whose values 
are unimportant for the sequel. Normal moments 
of different orders in the right-hand side of (55) 
will be considered as moments of the correspond
ing classical quantities in the mixed state of pres
ent interest. As has been shown in [21 , the corre
sponding "distribution function" is given by a con
volution of the distributions corresponding to the 
different states of the mixture. In the classical 
statistics this convolution describes the distribu
tion of the sum of two independent random quanti
ties. Therefore, considering each of the A z as a 
number, we can divide it into the sum of two inde
pendent terms: 

Az = Az1 +A?. 

In quantum-mechanical language this division cor
responds to the symbolic notation 

(A; ... An)=<<:~ Cjk.(Aj ... A~t):)) (56) 
j, k 1 2 

where A z = A 1 + A 1 , the symbol ( )1 pertains only 
to the operators A} and denotes averaging over 
Pio while the symbol ( )2 pertains to the operators 

Az and denotes averaging over p2• We note that to 
calculate the right-hand side of (56) we do not re
quire the commutation relations between the newly 
introduced operators A~ and A21, because the nor
mal products do not depend on the order of the fac
tors. 

The next step must be the inverse transforma
tion of the expression 

: ~ Cjk (Aj ... A~t): 
j, k 

in (56) into a conventional operator product. The 
result of this transformation depends only on the 
commutation relations for the "sum" field Az. If 
these are the same as the previous relations, then 
the commutation relations between Az and Al do 
not affect the transformation. Making use of this 
fact, we find it useful to write 

[A;i, Ak2 ] = 0, [A;I, A~t2] = [A;, Ak], 

(57) 

without violating the commutation relations for the 
"sum" field Az. By performing this transforma
tion in (51) we arrive at (11). 

We note an interesting deduction from this for
mula. Let us assume zero temperature of the 
thermal field corresponding to the statistical oper
ator Pi· It then follows from (11) that the radiation 
field can be considered formally as the sum of a 
classical part Al and of a quantum part Az rep
resenting zero-point oscillations. In the general 
case a calculation of the moments of this quantum 
part cannot be interpreted classically. 

The situation becomes simpler, however, when 
we are interested in the mean values of the actually 
measurable physical quantities. We then need to 
know only the real parts of these mean values; 
when these parts are calculated with any given or
der of the operators a classical interpretation is 
admissible. Let us consider the real part of any 
even-order moment of the zero-point field (the odd 
moments vanish). Since this field (like the thermal 
field) formally obeys the normal distribution law, 
we have[SJ 

Re <Az1 ••• An1> = Re ~ (A;1A/) ... ~A~t1Am1 > 

= Re ~ (1 + iG;i) (A;Ai>+ ... (1 + iG~tm) <AkAm>+· 
(58) 

Here (AiAj)+ = % (A{Aj + Aj A{), and Gr is the 
Hilbert transformation operator with re~pect to 
the variable T = ti - tj: 

1 1 
G;i <A;Ai>+ = -2 . (A;1A/- A/A;!)=--:- (A;Ai>-, 

~ ~ 

and the sum is taken over all permutations of the 
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indices among second moments; in each of these 
the order of the operators should remain the same 
as for the original moment. 

Thus in accordance with (58) the calculation of 
zero-point field moments is reduced to deriving 
the symmetrized moments (AiAj)+. The latter are 
derived from classical electrodynamical equations 
if the given correlation functions of random non
electromagnetic sources are consistent with the 
fluctuation-dissipation theorem at zero field tern
perature. [8 J Therefore in formulating the problem 
a quantum -mechanical analysis is required only 
when operators are placed in correspondence with 
the observable quantities in which we are in
terested. 

The zero-point field moments (AiAj)+ can best 
be investigated for free space; their space- and 
frequency-dependent Fourier components are used 
in the present work [see Eq. (18)]. Omitting con
sideration of a quasistationary field localized near 
absorptive surfaces and apparently playing no large 
role in optical and infrared regions, we can assume 
that these Fourier components are unchanged in 
form for a field contained within a space of dimen
sions much larger than A.. For systems having di
mensions that are comparable with the wavelength, 
to derive these moments we can use the already 
existing solutions of a large number of thermal 
emission problems by simply assuming zero tem
perature of all bodies. 

We now finally discuss the moments (mentioned 
at the beginning of this Appendix) of positive
frequency (Aj) and negative-frequency (Aj) field 
amplitudes. The expansion (58) also holds for 
these moments. Furthermore, in the zero-point 

state we have 

(A;-A~<-> = (A;+A~<+> = (A;+Ah-> = 0, 

we so that we are only concerned with calculating 
the moment (Aj_Ak). In (AiAk) and (AiAk) _we 
separate the operators into positive- and negative
frequency parts: 

(A;A 1) = 1/2(A;-A 11+ +A,,-A;+), 

(A;A"> = 1/2(A;-Ah+- Ah-A;+), 

whence it follows that 

which solves our problem. 
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