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Asymptotically exact term splitting for an excited atom interacting with another atom is calcu­
lated for large internuclear distances. The result is used to determine the cross section for 
excitation transfer from a metastable atom to an identical atom in its ground state. The diffu­
sion coefficient for metastable atoms in their own gas is calculated. 

1. THE processes involved in large transition cross 
sections are of the greatest interest in the physics 
of atomic collisions. Whenever a transition cross 
section is determined mainly by an impact param­
eter that is much larger than the dimensions of the 
colliding atoms, the magnitude of the cross section 
is associated with the asymptotic value of the dif­
ference between terms of the quasimolecule formed 
by the colliding atoms. Thus the cross section for 
resonance charge exchange between an ion and a 
parent atom is expressed in terms of the differ­
ence between an even- and odd-state term of the 
quasimolecule composed of the given ion and 
atom, [ 11 the cross section for electron transfer 
between two atoms of spin 1/ 4 is determined by the 
difference between singlet and triplet states of the 
quasimolecule, [ 41 the cross section for excitation 
transfer in the collision of a resonantly excited 
atom with an identical atom is associated with the 
dipole interation of the colliding atoms, [ 31 and the 
cross section for a transition between fine-struc­
ture components of an excited atom is determined 
by the splitting of its terms as a result of interac­
tion with another atom. [ 41 

In calculating the asymptotic difference between 
terms of a quasimolecule that consists of two 
atomic particles separated by a distance much 
larger than the atomic dimensions, two extremely 
opposite cases must be distinguished. In the first 
case the range of action of the two atoms, which 
determines the term splitting, is of the same order 
as the interatomic distance. This applies to the 
first two of the foregoing examples, for which the 
method of determining the asymptotic difference of 
terms is given in [ 5• 61 • In the second case the 
range of the atoms is much smaller than their 
separation; this applies to the last two cases. Here 
one calculates for an excited atom the term shift 
induced by its interaction with another atom that 
is in its ground state (or in a weak state of excita­
tion). This problem has been solved by Ovchinni-

kova [ 71 assuming that the electron wave function 
in an excited atom changes only slightly in dis­
tances of the order of the radius of the perturbing 
atom. This hypothesis breaks down, however, for 
the cross section of a transition between fine­
structure components of a resonantly excited al­
kali metal atom that has collided with an inert-gas 
atom. In the present work we have calculated the 
asymptotic shift of excited-atom terms that re­
sults from interaction with another atom, without 
employing the foregoing hypothesis. The result of 
this calculation is used to obtain the cross section 
for excitation transfer resulting from the collision 
between a metastable atom and an atom in its 
ground state. 

2. We shall calculate the change in the binding 
energy of an atomic electron as a result of its in­
teraction with another atom. It will be assumed 
that the interatomic distance R is much larger 
than the atomic radii, so that the relative change 
of the binding energy will be small. Let <I>(r1) and 
'l'(r1) be the electronic wave function in the excited 
atom in the absence and presence, respectively, of 
a perturbing atom; the electronic coordinate r 1 is 
measured from the nucleus of the excited atom and 
y 4/2 is the electronic binding energy. (We shall 
use the atomic units fi = mel = e2 = 1.) Since the 
interatomic distance is much larger than the radius 
of the excited atom: 

Ry2 ~ 1, (1) 

in the region of the perturbing atom the radial part 
of the wave function <I>(r1) coincides with its 
asymptotic form, so that in this region we have 

r, 2 '/ 
<D(r1)= <D(R)exp r- ~ ( y2-:---r') 2dr'] = ril(R)eBrcose, 

L R ' J 

(2) 

where {3 = /y2- 2/R; r, e, and cp are the polar 
coordinates of the electron with their origin in the 
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nucleus of the perturbing atom, so that for r « R 
we have 

r 1 = (n~ - 2rfl cos El + r2) 'lz ~ R - r cos El. 

The electronic wave function in the atom, in the 
presence and absence, respectively, of the per­
turbing atom, satisfies the Schrodinger equations 

- 1/ztlfl> + VoQJ = Eof!J, 

(3) 

where E0 = -y2/2; the effective potential V0 in­
cludes the interaction with the core of the excited 
atom, and v1 describes the interaction between 
the electron and the perturbing atom (V 1 = 0 out­
side this atom). We multiply the first of the equa­
tions (3) by \}! and the second by <1>, subtract one 
from the other, and integrate the difference over 
the volume outside a spherical surface represent­
ing the boundary of the perturbing atom. In this 
region \}! ~ <I>; consequently, this region of the co­
ordinates determines the normalization of the wave 
function, J \}1<1> dr = 1, so that 

v 

1:·-L,=!-\ ('J:i'vlD-<D\'Jf)ds;n+\ 1FC!d'1dr, (4) 
') . . 
~ s y 

where dsin is a surface element with its normal 
directed into the atom. 

We shall assume that the field V 1 (r) of the per­
turbing atom is spherically symmetric. Then for 
r « R the electronic wave function is expanded in 
spherical harmonics near the perturbing atom: 

1 00 

QJ (t•1) = CD (R) ,-> -2: (2l + i)Rz(cos 8)[cpz+ (r)- cpz~(r)], 
_,Br 1~o 

1 co 

1¥(r1) = CD(R) 2 ~,. 1~ (2Z + 1)Pz(cos 8)['\jlz+(r)- 'ljlz~(r)], 

(5) 

The functions cp z and 1/J z satisfy the equations 

11 Z(l+ 1) ,~- A2m 
cpz - r2 -.-z - I' -,-z. 

II l (l + 1) 2 v ( ) A2 'ljlz -----'ljlz+ 1 r 'ljlz= p'ljlz, 
r2 

(6) 

with cp[, q; z - ef3r and <fJz, 1Pz - e -{3r for r - oo. 

Since \}t(r1) and <l>(r1) coincide far from the per­
turbing atom, we have 1f!/ /q;/- 1 for r- 00 • Sub­
stituting (5) into (4) and assuming that at the atomic 
boundary V 1 = 0, and that cpz and 1/!z coincide with 
their asymptotic expressions: 

cpz+ = 'ljlz+ = Pz(1)e~r, r~ ~ 1; 

we obtain 
00 

E-E0 =~CD2 (R) 2; (2Z+1)cz. 
B r=o 

(7) 

It can be seen that in (4) the terms of like signs 
in the exponential will cancel if in (5) we confine 
ourselves to the first term of each expansion in 
powers of 1/r. It can be shown that this property 
is not associated with the approximation that is 
being used. Indeed, on the basis of (6) it is found 
that in (4) the terms containing functions with like 
signs in the exponential will also cancel in the next 
approximation of the expansion in powers of 
i3 2V 1 (r). Moreover, it follows from the procedure 
used to obtain (4) that the given terms will cancel 
if it is assumed that <pz and 1/Jz correspond to the 
same energy. Therefore Eq. (7) is valid if IE - E0 I 
« {3r on the boundary of the perturbing atom. How­
ever, since <I> 2(R) ~ e-zj3r this condition is asso­
ciated with the assumption that the radius of the 
perturbing atom is much smaller than the inter­
atomic distance R. 

Equation (7) is thus applicable if the radius of 
the perturbing atom, which is subject to the condi­
tions I V1 (rz)l « f3 2 and rz » l /{3, is much smaller 
than the interatomic distance (rz « R). The first 
of these two conditions is fulfilled when the ioniza­
tion potential of the perturbing atom is smaller 
than the binding energy of the electron in the ex­
cited atom. The second condition is violated when 
z is large. However, the large angular momentum 
terms contribute little to (7), so that this circum­
stance does not affect the accuracy of the result. 

3. The derived result (7) corresponds to the 
term shifts that are calculated when the wave func­
tion of the unperturbed atom is not zero at the lo­
cation of the perturbing atom <I>(R) 1- 0. We shall 
calculate the level shifts for the case in which the 
projection of the electronic angular momentum on 
the internuclear axis is unity. Then near this axis 
<l>(r1) =X (r1) sin J eiE, where rl> J, and E are the 
spherical coordinates of the electron, with the ori­
gin in the nucleus of the unperturb~d atom and the 
internuclear line as the polar axis. For polar co­
ordinates r, e, and E measured from the nucleus 
of the perturbing atom we obtain near the latter 
(for r « R) 

r . 
CD (r!) = X (R) e~r cos s R sin 8e" 

where cpz and cpz satisfy (6) and have the asymp-
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totic forms <Pz -- e f3r and <Pz - e -{3 r for r -- oo. 

The spherical-harmonic expansion of 1/J (r1), which 
coincides with <I>(r1) far from the perturbing atom, 
is 

'l'(rt) = ~-1- ~ (2l + 1)eie 
R 2~2r 1=1 

(8b) 

The 1/Jz functions satisfy (6), so that their asymp­
totic ex~ression~ are again 1/J[-- ef3r, and 1/!z 
-- [ ( -1) + cz] e f3r for r -- oo. Substituting the ex­
pansions (Sa) and (8b) into (4) (with <I> replaced by 
<I>*), we obtain for the energy shift 

00 

E- Eo= A~R2 x2(R) y, (21 + 1) C1. 

I' 1=1 

4. We shall now calculate the coefficients cz 
that are used to represent the shifts of levels in 

(9) 

(7) and (9). To this end we must solve (6) for 1/Jz 
and determine the asymptotic behavior of the elec­
tronic radial wave function far from the atom: 

\j:·1 --+ [e~·· + ( -1) l e-~r + c1e -fir] 

In the case being considered here the electronic 
binding energy {32/2 in the excited atom is much 
smaller than the ionization potential of that atom, 
so that c z can be expanded in a series with re­
spect to {3. Moreover, for small {3 the dependence 
of c z on f3 is determined by the long-range polar­
ization potential; therefore, to obtain the depend­
ence of c z on {3 it is sufficient to solve the equa­
tion 

( d2 l ( l + 1) a ' 
-? - ------ + --- A2 ). tP1 = 0, 

.. dr· r2 r4 I' (lOa) 

where a is the polarizability of the perturbing 
atom. For small f3 we divide the coordinate space 
into two regions. In the first region we have 
r « .../z (l + 1) /{3, (r « 1/{3 for l = 0), and the term 
{321/Jz can be neglected in comparison with the terms 
1f![' and l ( l + l)r-2 1/J z • In the second region 
r » (a/l( l + 1) 112, (r » Va for l = 0), so that 
ar-4 1/Jz is much smaller than l(l +l)/r2 and 1/!z'· 
If a{32 « l ( l + 1), ( a{32 « 1 for l = 0), these regions 
overlap. Therefore, by connecting the asymptotic 
solutions at the boundary between the two regions 
we are enabled to express the coefficients c z in 
terms of the parameters of (lOa) and the boundary 
conditions. 

For 
[all(l+ 1)]'1•<r< [l(l + 1) /~2)'h 

(-{a< r < 1/ ~ for l = 0) 

the electronic wave function corresponding to the 
asymptotic solution in the second region 
(r « .../z(l + 1) /{3, {3-1) is 

2(~r)1+1 (2Z-1)!! 
t~Jz= (2Z+1)!! +c1 (~r)l . 

We shall compare this solution with the solution of 
the equation that differs from (lOa) with respect to 
the sign of {3 2, describes a free electron, and was 
investigated in [S 1 : 

[ d2 l (l + 1) a ] -- +-+~2 s1(r)=O. dr2 r2 r"' 
(lOb) 

For large r (r » {3-1 .../z(l + 1), {3-1) the solution of 
this equation becomes* 

sz(r) = (n~rrh[Jl+'L(~r)- (-1) 1L1-'/,(~r) tg ot], 

where 6z ( {3) is the phase shift for an electron with 
the energy {3 2 /2 scattered elastically on the per­
turbing atom. For small r we have 

(or ra « r « {3-1 for l = 0), and the solution of 
(lOb) becomes 

To obtain the functions cz ( {3) and 2 tan 6z ( f3) 
we must solve (lOa) and (lOb) for small r 
(r«.../z(l +1)/{3, {3-1) with given boundary condi­
tions, i.e., with a given procedure for taking into 
account the short-range potential of interaction be­
tween an electron and the perturbing atom. If in 
this region of r the term {3 21/Jz ({3 2~z) is neglected 
in (lOa) and (lOb), then from the boundary condition 
for 1/Jz, which is ~z-- const · (rl·t-1- K 2 l+i r-l) for 
r-- 0, we obtain the relations of cz1 and 1/2 cot 6z 
to the scattering length; the two quantities are ex­
pressed alike in terms of the scattering length 
(6z ~ {32 l+i). For zero phase shift and the coeffi­
cient c0, by taking the boundary condition into ac­
count we obtain the first term in the expansion of 
each quantity with respect to {3; these first terms 
are identical for c01 and 1/ 2 cot oz. To obtain the 
second terms of the respective expansions the 

*tg =tan. 
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term -/321/! z in (lOa) and f3 2 ~z in (lOb) will be re­
garded as perturbations in the given coordinate re­
gion. Therefore the second terms of the expansions 
of c01 and % cot oz with respect to f3 have oppo­
site signs. By the same procedure we can obtain 
the relation between higher terms of the expan­
sions of c01 and 11:! cot oz with respect to {3. 

Using the expansion of cot 60 ( f3) for small f3 
that is given in [B 1 , we obtain for the zeroth coef­
ficient 

(lla) 

where L is the scattering length for the electron 
interacting with the perturbing atom. To obtain c z 
with l I- 0 it is sufficient to limit these quantities 
to the first term of the expansion in f3 that is ob­
tained by considering f3 21j!z as a perturbation in 
(lOa). From a comparison with the expansion of 
tan oz ( f3 ) in [ 8 1 we obtain 

c, = 2nup~ / (2l + 3) (2l + 1) (2l- 1). (llb) 

Substituting (11) into (7) and (9), we obtain for 
the level shift when the wave function of the unper­
turbed atom does not vanish on the internuclear 
axis 

[( 1 na 4a ~a )-1 
E- Eo= 2n<D2(R) - +- ~ + -- ~2ln-

\L ?,U 3L 4 

+JW~ l 
;) J· (12a) 

and also when it vanishes as sin J. [where J. is the 
polar angle measured from the internuclear axis 
with the coordinate origin at the nucleus of the 
principal (excited) atom] we have 

E- Eo = 2na lim liD (ri) \2 
3~R2r,~R sin'fr 

(12b) 

Thus, independently of the interatomic distance 
the coefficient in (12a) and (12b) for the asymptotic 
exchange interaction is represented by an expan­
sion in the small energy of a weakly bound elec­
tron. The small parameters of the expansions are 
f3L « 1 and aj3 2 « 1; this can be seen directly from 
the method used to solve (lOa) and (lOb) for small 
f3. The small parameter f3L « 1 results from tak­
ing into account the boundary condition imposed on 
the electronic wave function for r-- 0 and is de­
termined to a large degree by the short-range in­
teraction potential; the small parameter af32 « 1 
corresponds to the polarization interaction. The 
first and second terms in the expansion (lla) are 
determined by different regions between the elec­
tron and nucleus and are therefore not related to 

each other. The higher terms of the expansion are 
much smaller than one of the first two terms, since 
they contain one of the small parameters to a 
higher degree. However, the relative magnitudes 
of the first and second terms can be specified ar­
bitrarily; this procedure was used by 0 'Malley in 
[ 91 , where the Ramsauer effect was investigated in 
electron elastic scattering by inert-gas atoms. 
Since for small k the expansion of the phase shift 
is 60 = - Lk - 7Wk2/3, where k is the electron mo­
mentum, the Ramsauer effect should be observed 
at ko = - 3L/7ra, (L < 0); this expansion is valid 
for Lk « 1 and ak2 « 1, i.e., the Ramsauer effect 
is expected at low energies. Since this is fulfilled 
for inert gases, O'Malley[ 91 used the Ramsauer 
effect to determine the scattering length for an 
electron with respect to inert-gas atoms and ob­
tained reliable results. 

5. We shall now consider the case of small {3.[ 71 

Confining ourselves in (12a) to the first term of 
the expansion in powers of {3, we obtain 

E - Eo = 2nLID2 (R), (13) 

which coincides with the result obtained by Ovchin­
nikova in [ 71 • This result is associated with the 
hypothesis that the electron wave function inside 
the excited atom does not change within the range 
of the perturbing atom. Indeed, assuming <P(r1) 

= <P(R) and w(r1) = <P(R) x [1- L/r] near the per­
turbing atom and substituting these expressions 
into (4), we obtain (13). 

6. As was mentioned in the introduction, the 
results in (12a) and (12b) have a relationship to 
transitions between fine-structure components in 
collisions between an excited atom and another 
atom. [ 41 Thus if the excited atom is an alkali 
metal in its s-state the fine-structure states are 
P 3; 2 and P 1; 2 terms, whose difference is deter­
mined by the spin-orbit interaction in the atom. 
The interaction between the excited and perturbing 
atoms splits the P 3; 2 into a 2: and a II term. 
Since the angular wave function of the II term van­
ishes on the internuclear axis, the corresponding 
energy is independent of the interatomic distance 
in first approximation. Therefore a collisional 
transition occurs in the vicinity of a point where 
the shift of a 2: term equals the energy difference 
of the corresponding atomic fine-structure com­
ponents. 

The situation described above occurs when the 
perturbing atom has zero spin. Cases of non-zero 
spin are accompanied by additional term splitting 
in accordance with the total spin of the electron 
and atom. Then Eqs. (12a) and (12b) will contain 
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the scattering phase shifts corresponding to the 
same total spin. We here assume that the inter­
atomic distance is not very large, so that the 
atomic exchange interaction considerably exceeds 
the van der Waals interaction. 

7. We shall now consider one additional process 
that is related to the result in (12a) and (12b)­
excitation transfer in a collision between a meta­
stable atom and an unexcited identical atom. The 
cross section for this process enables us to de­
termine the diffusion coefficient of the metastable 
atom in its own gas; this characterizes the life­
time of metastable atoms, which is associated with 
their drift to the walls. For the sake of simplicity 
we shall assume zero spin for an atom in its 
ground state. The quasimolecule consisting of an 
atom and an excited identical atom is symmetric. 
Thus the electronic Hamiltonian is not affected by 
electronic reflection in a symmetry plane perpen­
dicular to the internuclear axis and passing through 
its midpoint. Therefore the eigenfunctions of the 
Hamiltonian are even or odd functions depending 
on whether their sign is conserved or changes with 
electronic reflection in the symmetry plane. The 
eigenfunctions of the Hamiltonian for a quasimole­
cule consisting of an atom and an excited atom are, 
for large interatomic distances, 

1¥ g," = 2-~;, [1¥1 ± '¥2]. 

Here >¥1 describes the case of an excited atom 
No. 1 and a ground-state atom No. 2, and vice 
versa for >¥2• We introduce the functions 

<l>g, u = 2- 1h[<J>1 + <!>2], 

so that <I> 1 2 is defined exactly like >¥1 2 , except 
that intera'tomic interactions are negl~cted. 

We shall employ the procedure that was used to 
derive (4). The boundaries of the respective atoms 
will comprise the surface of integration, assuming 
<I>1 == >¥1 near the first atom and <I>2 == >¥2 near the 
second atom. The result is an equation analogous 
to ( 4): 

Eg, u- Eo= 1/4 ~ {[(1¥2- <D2) V<D1- <D1V ('F2- <D2)] 

+- (1Jf2V <D2- <D2V1Jf2)} ds1 in± 1/4 ~ {[('¥1- <D1) V<D2 

- <D2 V (1¥ 1- <D1)] + (1¥ 1 V <D1- <D1 V 1¥ 1)} ds~in. 

Neglecting the expressions in square brackets, 
which are exponentially small compared with the 
principal term, we obtain 

Eu=Eo=Eg- 1h ~(1¥tV<D1-<DtV'¥1)ds1in' (14) 

where E0 is the atomic interaction energy, and 
Eg and Eu are the even and odd states of the 

quasimolecule. It then follows from a comparison 
of (14) and (4) that the difference between the even 
and odd quasimolecular states is given by (4) and 
(12). 

The wave function of a quasimolecule consist­
ing of a ground-state and an excited atom, corre­
sponding to excitation of the first atom before the 
collision, is, for slow nuclear motion, 

1 +oo 
'¥= i 2 'Vgexp{-i~ Egdt'} 

-oo 

1 +oo 
+-2-'Vuexp {-i ~ Eudt'}. 

l -oo 

This expression satisfies the Schrodinger equa­
tion io'IJF /ot == H'IJF. It follows from the given wave 
function that the probability lim I ( >¥ I>¥ 2) 12 of exci-

t-oo 
tation transfer, like the probability of resonance 
charge transfer, [ 1 J is given by 

+oo (E -E) 
H' = sin2 \ u g dt .) 2 . 

-oo 
Since Eu- Eg depends exponentially on the inter­
atomic distance, the cross section utr for excita­
tion transfer is given by a formula that is analo­
gous to the case of resonant charge transfer: [ 10 J 

utr == 1rR5/2, where R0 is the impact parameter for 
which 

+ool£ E I 
I g- " dt = o 28 .) 2 .. (15a) 

-oo 

Equation (15a) is valid for s-state excited elec­
trons, and can be converted to 

)'nRo/2J3JEg-Eul (Ro) = 0.28 v. (15b) 

The diffusion coefficient of metastable atoms is 
defined like the diffusion coefficient of ions in their 
own gas. First, the dependence of the cross sec­
tion for excitation transfer on the collisional ve­
locity is the same, [~ ln2 (c/v)] , as that of the 
cross section for resonant charge transfer. Sec­
ondly, as a result of excitation transfer an excited 
atom is scattered at an angle X == 1T in the c.m. 
system (neglecting atomic elastic scattering). 
Therefore the diffusion cross section u * for scat­
tering of a metastable atom in its own gas is, just 
as in the case of resonance charge transfer, [ 11 J 

a*=~ (1- cosx,)datr= 20tr. 

From the analogy with resonance charge transfer 
we obtain the diffusion coefficient D of metastable 
atoms in their own gas: [ 12 J 
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3 (nT)'1' 

D= I ' 
8;YJJ''::; 

- 40 2 ( (2T \ 
o=4rnTlo 2,11 M,!· (16) 

where T is the gas temperature, N is the gas 
density, M is the mass of atomic nuclei, and Ro 
is the impact parameter determined from (16). 
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