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The analytic properties of the scattering amplitude as a function of the coupling constant g and 
the angular momentum A. are considered. It is found that for a potential of the form b/x2 ln x 
in a theory with the Lagrangian gcp 4, the scattering amplitude is analytic in g at the point g = 0 
and has a logarithmic branch point at A. = 0 for k2 = 0. 

1. IN recent times a number of authors[ 1- 7J have 
investigated the analytic properties of the scatter­
ing amplitude in the coupling constant g and the 
angular momentum A. by considering a theory with 
the Lagrangian gcp 4 in the ladder approximation. 
Thus it was shown in [ 1' 2 J that for a potential 

g2 g3 
V(r)= -a-- b-ln2mr a> 0, b > 0, 

r2 r2 ' 

corresponding to the graph of Fig. 1, the scatter­
ing amplitude has fixed branch points A. = ± ...J ag2 
+ O(gZ) in the A. plane and an essential singularity 
at g = 0 in the plane of the coupling constant. An 
analogous result was obtained in [ aJ, where the 
analytic properties of the scattering length as a 
function of g were investigated for the potential 

g R 
V(r) =-In-, r < ro, 

r2 r 

V(r) = 0, r > ro. 

For this potential the scattering length has, at 
g = 0, a branch point and an essential singularity 
of the type corresponding to a condensation of 
poles. A branch point of the root type in the A. 
plane has also been obtained in [ 4] by summing the 
most singular terms in an iterated series. The 
graphs of Fig. 2 were considered in [ 5• 6• 7 J. For 
example, Charap and Dombey[ 7] showed that the 
potential corresponding to the graph of Fig. 2b, 
leads to an essential singularity of the wave func­
tion in the angular momentum A. at the point A.= 0. 
The question whether this essential singularity 
also appears in the scattering amplitude has not 
yet been resolved. 

In the present note we consider the analytic 
properties of the scattering amplitude in g (g-- 0) 
and A. (A.-. 0) in a theory with the interaction gcp 4, 

using the ladder approximation; the graph of lowest 
order will in this case be the graph of Fig. 2b. We 
use the method proposed by Filippov, [ 1 J who ob-

a b c 

FIG. 1 

tained a differential equation-the relativistic ana­
log of the Schrodinger equation-from the quasi­
potential equation for the partial scattering ampli­
tude and found the corresponding general expres­
sion for the local potential. 

2. The potential corresponding to the graph of 
Fig. 2b has the form 

where 

g 
V(x)=ax2 lnx-, x<xo, 

F (.r) = 0, x>xo, 

a=-(2n)2y(l.), g>O, xo<1, 

[f(A. + 1)]2 
y(A.) = (A.+ 1/2)[f(A. + 1/2)}2 

(1) 

The differential equation for the "wave function" 
<Pt._(x) introduced in [ 1 J is written in the form 

a b 

c ~=·+ c=>+CXJ+·'· 
FIG. 2 
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(2) 

where A.= l is the orbital angular momentum,u 
k2 = k' 2/4m2, k' is the wave vector, and m is the 
mass of the intermediate particle. 

For x = 0 we have the following boundary con-
dition: 

cpA(g, k, x) lx-+0 = 0. 

A particular solution of (2) satisfying this condi­
tion can be found from the integral equation 
(x < Xo): 

/;;2f(1- ag/2'A) 
rn•'(" k x) = \lf,(1l(1! 0 xl+ ----=---
'f."' bl ' 1\. v1 ' , 2/.., 

X 

X ~ [\lf ~.( 1 ) (g, 0, x) 'F~.<2l (g, 0, x') 

- 'F1.< 11 (g, 0, .r') llf~.(z) (g, 0, x)] ql1.' (g, k, x') dx', 

where 

( ag ) 'lf.(O(o· 0 r)=x1·+'/,tJf --0 -2Unx 
f.. ~. ·~. \ 2A ' ' I ' 

'V~.<z'(g, 0, x) = xi-+'h( -2).ln x) 

xco(1- ag ,2.-2/.lnx), 
\ 2~ . I 

(3) 

(4) 

(5) 

and >¥ and il> are confluent hypergeometric func­
tions of the second and first kind. [S l For x- 0 

we have 

'!"1.<1> (g, 0, x) ~ x'M1• ( -2'A ln x) ag/21., 

l¥~.<2>(g, 0, x) ~ x'/,-I.(-2'Alnx)-ag/21.. 

The other independent particular solution which 
behaves like 'lr~>(g, 0, x) at the origin becomes in­
finite at x = 0 for integer A.. Therefore we con­
sider the following solution of (2) in the region 
X< Xo: 

(jll. (g, k, x) = constqJ1.' (g, k, x). 

The boundary condition at infinity has the form 

sin ( kx - l' n/2) 
!pJ.(g,k,x)jHoo~ k 

the relativistic Lippmann-Schwinger equation. [ 11 

The condition (6) can be obtained easily by taking 
account of the relation between the p representa­
tion of cpA. (x) and A A.(g, p, k, XQ). [ 11 

The Jost solution in the region x > x0 is taken 
in the form 

g~.(g, k, x) = (1/znlc-1x) '''h(kx), 
j~.(g, -k, .r) = (i/2nkx)'hifh<1>(kx), 

where JA. and H~1 > are the Bessel and Hankel func­
tions. From this we obtain in the usual way 

')/.; ----· 

A~.(g, k, x0 ) = ~--1/k2 + m2 
Jtl 

kh' (kx0 ) + B~.(g, k, xo) h(kJ'o) 

X klh<W (kx0 ) + B~.(g, k, xo)fh(fl(k.ro) ' 

and 

I] ( .,. l· .. ) - -~- qJ/(K, k,x)./ l 
A 0 , t:, ~to - . , . 

2.ro !fl. (g, k, x) x=.,., 

(7) 

3. Of paramount interest in field theory is the 
behavior of the scattering amplitude for large mo­
menta, which corresponds to small distances. At 
small distances the analytic properties of the scat­
tering amplitude are determined by the most singu­
lar part of the potential which in our case has the 
form (1). Therefore we consider in the following 
the case Xo « 1. The function cp~(g, k, x) is ana­
lytic in g in the neighborhood of g = 0, since it is 
determined by the Volterra equation (3) and 
>¥ (-ag/2A., {3, -2A. ln x) is analytic in g. For 
small g we find 

B~.(g, k, x0 ) =- - 1-[ ). + ~-+ O(g2) J, 
Xo 2). In Xo 

where O(g2) contains only integer powers of g. 
Thus A A. (g, k, Xo) has no singularity in g near 
g = 0. For k2 = 0 this also follows from (8) (see 
below). We note that the potential under consider­
ation does not satisfy the condition 

~ xj V(x) jdx < oo, 
0 

Jt 1 1 _ __ A~.(g, k, .1'o) ci(kx-!'ct/2), 

2 /.;2 1k2 + m2 

and the trace of the kernel of the corresponding 
(6) integral equation diverges. 

where l' = A. - 1/ 2 and AA.(g, k, Xo) is the relati­
vistic scattering amplitude2>'which coincides with 
A A. (g, p, p', Xo) for p = p' = k; the latter satisfies 

1 )We note that the "centrifugal" term is here (F - 1/ 4)/x2 

and not [(l + 1/2Y - 1/ 4]/x2 , as in the usual Schrodinger equa­
tion, and l ,; 0. 

2 ) 4 1• ~-c- 2k 'jfti:!:r:-i,'ti Jr1e101 ~in 13 1• 

Let us consider the quantity fA. (g, Xo): 

(8) 

In the region I A. I « 1 we use the expansion of the 
degenerate hypergeometric function 'lr(a, {3, z) 
for integer {3 : 
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ez/2 
1l'(a,~,z)=-.-(-1)~z( 1-Bli2 p'f,l'(r)sinan[con<;t('1 f.l r) :1 - .. ,..., ' ', l. (J 

+ 0 ( lc) + 0 ( /, In lc) ], (9) 

where 

p= 1h~-a, a= -ag/2'J..., z=2"Ailnxol, 

larg .::1 < Jt. 

Formula (9) is easily obtained from the repre­
sentation of "lll(a, {3, z) in the form of a series for 
integer {3. [ 8 J Then fA (g, Xo) is written in the fol­
lowing form: 

f~c(g, xo) = 2(xo / 2)21cJ..[1 +leA], (10) 

where 

A= const(g, x0) {1 + 0(1,) + 0(/cln /c)}. 

The analytic properties of the scattering ampli­
tude for k2 = 0 in the region I A I « 1 follow imme­
diately from (10) and (8) with account of the prop­
erties of the function "lll(a, {3, z). [8 J In this region 
the scattering amplitude has a logarithmic branch 
point at A = 0. The wave function contains a log­
arithmic branch point and an essential singularity 
at A= 0, as follows from (3), (4), and (9). 

4. The example considered above shows that a 
potential of the type (1) leads to a non-analytic 
dependence of the relativistic scattering amplitude 
on the complex angular momentum A. There­
placement of the kernel of Fig. 1b by the kernel of 
Fig. 2b in the corresponding integral equation 
alters essentially the analytic properties of the 
scattering amplitude in the coupling constant. The 
presence of an essential singularity in A in the 

wave function of an equation of the Schrodinger 
type does not yet mean that this singularity also 
appears in the scattering amplitude. With obvious 
modifications the results obtained above are also 
valid for the usual nonrelativistic Schrodinger 
equation with a potential of the type (1). 

The author takes pleasure in expressing his 
gratitude to A. T. Filippov for his constant in­
terest in this work and for suggesting this prob­
lem. 
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