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The one-dimensional problem of amplification of a monochromatic longitudinal wave by a 
charged-particle beam in a nonlinear plasma, which is described by a dielectric constant 
E = 1- (w~/w2) exp (-E 2/E~) (wp is the plasma frequency, w the operating frequency, E 
the amplitude of the excited field; w < wp) is considered. It is shown that for a sufficiently 
high beam density, the reaction of the excited oscillations on the motion of the beam par
ticles can be neglected, at least in the vicinity of plasma resonance ( lw - wpl « wp). The 
maximal amplitude of the amplified wave, and also the dependence of the amplitude on the 
coordinate, are found. The possibility of appearance of accelerated particles at the amplifier 
output is noted. 

AS is well known, upon passage of a beam of 
charged particles through a plasma, amplification 
of longitudinal oscillations takes place at frequen
cies w < wp for which the dielectric constant of the 
plasma is negative. In the linear theory, the am
plitude of the oscillations here increases exponen
tially with the coordinate. However, at large 
amplitudes, the linear theory is inapplicable, and it 
appears to be necessary to take into account the 
nonlinear effects of the interaction of the beam 
with the plasma. 

One of these effects is the reaction of the excited 
oscillations on the motion of the beam of charged 
particles. This effect is the decisive one if the 
beam density is small while the frequencies of the 
oscillations excited by it are close to the resonant 
frequencies of the particles of the beam. Under the 
condition that there is no correlation of the phases 
of the excited oscillations, this effect can be re
garded in a quasilinear approximation; [t, 2] the 
case of oscillations with fixed phase was consid
ered in [3- 5]. 

In the other limiting case, when the beam den
sity is not small, and the frequencies of the ampli
fied oscillations are close to the resonant frequency 
of the plasma, the most significant situation is the 
nonlinear dependence of the parameters of the 
plasma on the amplitude of the excited oscillations, 
which leads to a dependence of the growth incre
ment (the amplification coefficient) on the ampli
tude of oscillations. [sJ We shall consider below 
the effect of this on the amplification of the longi-

tudinal oscillations in a plasma by a monoenergetic 
beam of charged particles. 

The initial system of equations consists of the 
equations of motion and continuity for a beam of 
particles and Poisson's equation: 

au au e a a 
-+u-=-E -n+-nu=O, 
dt az m ' at az 

aD 
-=4:n:e(n-nb), D=e(E)E, (1) az 

where n is the density of the plasma beam and v its 
velocity (nb is the equilibrium beam density). The 
nonlinear properties of the plasma here are taken 
into account by the dielectric constant E (E), the 
dependence of which on the amplitude of the field is 
given in a number of researches. [7- 9] We have 

e(E) = 1- Wp
2 exp (- J!r), 

wz Eo2 

Eo2 = 8w2mkT 
e• 

( la) 

Here np is the density of the plasma at the point 
where the amplitude of the field is equal to zero. t> 

Neglecting nonlinear effects in the equations of 
motion of the beam particles (1) (an estimate of 

1 )Equation (la) was obtained in [7-9) for a transverse field 
with amplitude depending on the longitudinal coordinate. For 
the case of a longitudinal field, a similar expression can be 
obtained by expansion of the hydrodynamic equation of motion 
of the particles of the plasma in the amplitude of the field, 
with subsequent averaging over the period of oscillation. 

300 



THEORY OF AMPLIFICATION OF LONGITUDINAL WAVES 301 

the conditions of applicability of this approximation 
will be given below), we obtain the following equa
tion for the field E: 

( () ())2 
Tt + Vo---;;;- D + Wb 2E = 0. ( 2) 

We shall seek a solution of this equation in the 
form of a wave traveling with a velocity equal to 
the beam velocity v0, and a z-dependent amplitude: 

E=Eoy(z)cos[w(t-zlvo)]. (3) 

In this case, 

(! +vo 0: )cos[w(t-z/vo)]=O, 

and from Eq. (2) we get for the dimensionless am
plitude of the field y(z) the ordinary differential 
equation: 

if2 
dx2 [yB(y)] + vzy = 0; 

v2 = nb I np, x = C•lpZ I vo. ( 4) 

In the linear approximation (y « 1), E(y) = E( O) 
< 0, and the exponential increase in the amplitude 
of y along the x coordinate follows from Eq. (4), 
with the amplification coefficient a = vic( 0) rt(2. 

It is most convenient to study the nonlinear solu
tions of Eq. (4) by means of the first integral of 
this equation, which we shall write down for the 
case of small field amplitude y, taking into account 
the smallness of I E(O) I: 

y'2[ I B (0) I - 3y2)2 + v2yz[ e(O) + slzy2) = C. ( 5) 

First of all, it is necessary to note that, in ac
cord with (5), there is a maximal amplitude, deter
mined by the condition y'(Ym) = 0. The value of this 
amplitude, and also the change in the field ampli
tude with the coordinate, are determined by ( 5) and 
depend materially on the value of the constant C. 
When C = 0, the solution of (5) has the form of a 
unit pulse with maximum amplitude 
Ym = [% ic(O) IJ11 2• Thus, for frequencies close to 
the plasma frequency, the maximum amplitude is 
actually small. The characteristic dimensions of 
the pulse L are determined by the amplification 
coefficient of linear theory: L ~ a-1• 

It is easy to see that for C "'0, the solution of 
Eq. (5) varies periodically with the coordinate; for 
C > 0, we have Ymin = -ymax• and for C < 0, we 
have 1 > Ymin/Ymax > 0. For the form of the de
pendence of the field on the coordinate and time 
chosen by us (3), the function y(x) determines the 
field in the coordinate system in which the beam is 
at rest. It then follows that in the given system, 
for C ::s 0, each particle moves in a field that does 

not change sign, and can be retarded or accelera
ted, depending on the phase of the modulating field. 
Inasmuch as we have not taken into account the ef
fect of the amplified field on the motion of the beam 
particles, assuming this motion to be given, the 
condition for applicability of the considerations 
given above amounts to the requirement of the 
smallness of the displacement of the particle 
.D.z = eE 0ymL2/mv~ under the action of the field at 
distances of the order of a period of the stationary 
structure L in comparison with the length of the 
amplified wave v 0/ Wp (a :S 1). This condition is 
essentially identical with the condition of the pos
sible neglect of terms vVv in the equations of mo
tion of the beam, and leads to the inequality 

which we assume to be satisfied. Thus, our con
sideration is actually valid for not too small a 
beam density and in the vicinity of the plasma 
resonance. 

It must be noted that the considerations given 
above are not valid close to the points Yc = ± Ym/'·12, 
where the nonlinear dielectric constant of the 
plasma, which is defined as the derivative of the 
induction with respect to the amplitude of the elec
tric field, vanishes. Near these points, the deriva
tive with respect to the field amplitude increases; 
therefore, one must consider spatial dispersion of 
the dielectric constant of the plasma (high-frequency 
contribution to the pressure gradient of the plasma), 
which is not taken into account in the dielectric 
constant ( 1a). Far from the points, where y2 = y~, 
account of these effects leads to corrections of the 
order of v~/v~, which we assume to be small. 

Account of spatial dispersion in the vicinity of 
the critical points leads to the following equation 
for the field amplitude y(x) (under the assumption 
that the dimensions of this region are small in com
parison with the wavelength v0/wp): 

d~ d2 
~-t2 -y + -(YB(Y)] + v 2y = 0 

dx~ dx2 ' 
VT 

~-t=-. (6) 
Vo 

We must study the solution of this equation in 
the vicinity of the singular points, where the differ
ence w = y - y c is small. In this case, the order 
of Eq. (6) can be reduced. By integrating twice 
with respect to ~ = x- Xc, we get 

d2w 
!-t2 dx2 + 3ycw2 = ci~, ( 7) 

where C 1 is a constant of integration (which can be 
expressed in terms of the constant C of Eq. ( 5)). 
The theory of the last equation is set forth in[toJ, 
in which it was shown that its solution is not ex-
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pressed in terms of elementary functions. We are 
interested in the behavior of the solution of Eq. (6) 
in the vicinity of the point w = 0, ~ = 0. In this 
case, the solutions can be sought in the form of a 
series in powers of ~: 

c1 
w=Czs+ 6!-l2 s3 +0(s4). (8) 

Thus the account of spatial dispersion leads to the 
result that the derivative w' remains finite as ~ - o. 

This statement is valid, according to (8) only if 
~ « 1-'· For ~ » /-L, when w is not too small, we can 
neglect the term in Eq. (7) with the second deriva
tive, as a result of which we obtain w ~(I~ I) 1/2 and 
w' ~(I~ 1)-112 , that is, growth of the derivative with 
decrease in I~ 1. Substituting this solution in (7), 
we can establish the fact that it is valid for 
~ » !-' 4/ 5, i.e., at distances greater than the Debye 
radius. Thus, far from the critical points, we can 
solve Eq. (5) and match the solutions on both sides 
of the cut, starting from the condition of continuity 
of the field and its derivative. 

It must also be emphasized that the particles of 
the beam at the output of the plasma layer can have 
an energy greater than the energy of inertia. Such 
an effect can obviously lead to the appearance of 
fast particles in the experiments. [11] 

The authors thank Ya. B. Fa'i'nberg for suggest
ing the theme and discussing the results, and also 
V. D. Shapiro and V. I. Shevchenko for useful dis
cussions. 
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