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The nonequilibrium state distribution of atoms is obtained with the aid of the one-quantum approx­
imation and the Fokker-Planck equation, for conditions when the kinetics of their production and 
annihilation are determined by collisions with electrons. The results are used to explain the ex­
perimentally observed deviations from the Boltzmann distribution. 

IN a nonequilibrium stationary plasma, the con­
centration of the atoms at any excited level is usu­
ally determined from the balance conditions for all 
the elementary processes that lead to population 
and depletion of the given level. Solution of the 
corresponding system of balance equations yields 
the distribution of the excited atoms over the 
states and the concentrations of the charged and 
neutral particles in the plasma. The solution of 
the problem in this formulation is quite a compli­
cated matter. 

In this paper we consider the problem in a sim­
pler formulation. It is assumed that the concentra­
tion of the neutral atoms (Na), electrons (Ne), and 
ions (N+) are known. The velocity distribution of 
the electron is Maxwellian with a specified tem­
perature Te, which may differ from the tempera­
ture of translational motion of the heavy particles 
Ta. Inasmuch as there is no equilibrium, the con­
centrations Na, N eo and N+ are not interrelated 
by Saha's formula with Te or Ta. The system is 
stationary, since it is assumed that there exist 
''sources'' that maintain the specified values of 
Na, Ne, N+, Ta, and Te. It is required to find the 
distribution of the excited atoms over the states. 

Even in this simplified formulation, the obtained 
system of balance equation is quite cumbersome, 
and can be solved for concrete conditions only nu­
merically. [ 1- 31 

There is no doubt that by far not all elementary 
processes have the same significance for the de­
termination of the atom concentration at a given 
level. Thus, over a rather wide range of plasma 
parameters, the collision processes with the great­
est probability are transitions between neighboring 
energy states.1> With increasing energy gap, the 

1 )We do not consider here the possible deviation from this 
fact, connected with the presence of forbidden transitions, 
implying that we are dealing with transition probabilities av­
eraged over sets of terms. 

probabilities of the corresponding transitions de­
crease rapidly. The latter circumstance indicates 
that on the average the energy of the bound optical 
electron changes little in atomic collisions, and 
that these changes can be regarded as a slow prob­
abilistic process of the Brownian motion type in 
energy space. [ 41 Assuming here that the energy in 
the atom changes in quasi-continuous fashion, we 
can reduce the problem to the solution of a Fokker­
Planck differential equation. Pitaevski1 and Gure­
vich[5-7l used it successfully to describe the kin­
etics of recombination. However, the assumption 
that the energy changes quasi-continuously is 
hardly justified for transitions between ground and 
first-excited states in an atom, where the energy 
of the bound electron changes markedly. This lim­
its the applicability of the Fokker-Planck equation. 

In this paper we use two approaches that are 
close in character and supplement each other to 
some degree: the Fokker-Planck diffusion equa­
tion and the so-called one-quantum approximation. 
In the latter case we take into account the discrete 
nature of the levels of the atom, but consider only 
transitions between neighboring states. The one­
quantum approximation was used earlier to deter­
mine the distribution of molecules over the vibra­
tional states. [S 1 We have called attention to the 
possibility of using it to determine the concentra­
tions of excited atoms. On the basis of a compari­
son of the results obtained with the aid of the one­
quantum approximation and the Fokker-Planck 
equation, we propose an approximate expression 
for the determination of the atom concentration at 
any level, with account taken of the discreteness 
of the levels and the different transitions between 
them. The results are compared with numerical 
calculations and are used to explain the non-equi­
librium state distribution of the atoms, observed 
in arcs. [ 9- 101 

For simplicity we confine ourselves to plasma 
conditions such that the radiative processes play a 
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secondary role in the kinetics of production and 
annihilation of the excited states. This means, 
first, that the plasma must be optically dense for 
lines of the resonance series, so that the latter 
are strongly reabsorbed and the radiation yield in 
them is not significant. Second, the electron con­
centration must be large enough to make radiative 
transitions between excited states much less fre­
quent than the corresponding impact transitions, 
and by the same token prevent them from notice­
ably influencing the distribution of the excited 
atoms. 

ONE-QUANTUM APPROXIMATION 

We start the solution of the problem in the so­
called one-quantum approximation. According to 
the latter, a bound electron can execute transitions 
in which the principal number changes by ±1, i.e., 
to neighboring levels. As was already noted, such 
transitions are more frequent than transitions in 
which the principal quantum number changes by 
± 2, ± 3, etc. Let us analyze this assumption for 
the case of collisions with free electrons. We 
write the balance equation for the atoms at the 
i-th level 

~: (Nhwhi- N;w;R.) = 0, 
h•Fi 

where wki is the probability of the transition 

(1) 

k- i per unit time, averaged over the distribution 
of the free electrons. The summation in (1) is over 
all the discrete states realized in the plasma, and 
the state e corresponding to the continuum. It is 
convenient to introduce the relative concentrations 

(2) 

where N1 is the concentration of the atoms at the 
level i under equilibrium conditions. Using (2), 
we get from (1) 

~ = N;0W;~t(Yh- y;) = 0. 
h*i 

(3) 

The quantity N~wik = ~kwki characterizes the fre­
quency of the i - k transitions. According to our 
assumption 

A; = N;0 (w;, i+t + w;, i-t)~B; = ~· N;0Wih· 

h*i· i±i 

In the Bethe-Born approximation[UJ 

N .o . - N N 4-y'2:n: e4i\g;f;R. 
1 W1h- a e---===----~ 

't.a(fo}YmkTe(E; -Eh) 

[ max(E;, E~t) J 
xexp • 

kTe 
(4) 

where 

l:a(/o) = ~ CneEnlhTe 

is the partition function, 2> gn the statistical weight 
of the level n, En = Ry /n2 the energy of the level 
n, n the effective quantum number, Ry the Ryd­
berg constant, fik the oscillator strength of the 
i - k transition, and A the Coulomb logarithm. 
For the ionization probability we use the data 
of [121 • 

The table lists the ratios Bi/Ai calculated for 
different states of hydrogen. For bound-bound 
transitions we have here A~ 0.2. Ual As seen 
from the table Bi/ Ai « 1 in this temperature 
range. We note that although these results were 
obtained in the Bethe-Born approximation, the con­
clusions do not change qualitatively when other uni­
versally accepted approximations are used. In par­
ticular, similar estimates made in the Born ap­
proximation resulted in no appreciable differences. 

1 
4 
8 

T, Ul'ol\ 

5 12 
0.001 0.035 
0.07 0.10 
0.09 0.10 

We thus obtain the solution of the balance equa­
tion, confining ourselves to the most important 
transitions i - i ± 1. We obtain in place of (3) 

N;0Wi-1, ;(Yi-1- y;) - N;0W;, H1(Y;- YH1) = 0. (5) 

Since there is no detailed balancing, impacts of 
the first kind do not compensate for impacts of the 
second kind, and a stationary solution is possible 
if 

(6) 

For the last state ii realized under the given con­
ditions we have[ 141 

N;;:wn• (yn - Yh = const, (7) 

where y1 and y~ are known. Thus, in the case of 
not too high temperatures, Yt = Ni/N~ 
= 't.a(f0)/'t.a(f), where fo and f are the equilibrium 
and non-equilibrium distribution functions, and 
't.a(f0) and 't.a(f) are the corresponding partition 
functions of the atom. 

Solving (6), we obtain 

2>we took into account the fact that the energy of the 
bound state in the atom is En < 0, so that En is henceforth 
taken to mean I En I . 
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. (1-ye2)Ne 
const = 1 = 

. ~a(/)~18 ' 
(8) 

where 

The physical meaning of j in (8) can be readily 
established from (6). We see that it is proportional 
to the number of bound electrons going over per 
unit time from the state i to the state i + 1, i.e., 
j is the particle-number flux. From (8) we see 
that under equilibrium (y~ = 1) we have j = 0. If 
y~ > 1, the flux is directed toward negative ener­
gies and the processes of recombination and 
quenching prevail over excitation and ionization. 
The opposite obtains if y~ < 1. When i = 1 we have 
Y1 = 1, and Yi- y~ for sufficiently large i. 

We represent Wi, i+t in the form 

(9a) 

where v is the average velocity of the free elec­
trons, and Ui, i + 1 is the averaged excitation eros s 
section. Then 

. 1- Ye2 
l = ~a(f)Qt•/v' (9) 

where 

By the same token we know the particle concentra­
tion at any level. 

A shortcoming of the one-quantum approxima­
tion is that no account is taken of the transitions 
i- i ± k with k:::: 2. We consider another method 
of solution, in which these transitions are taken 
approximately into account. 

THE FOKKER-PLANCK EQUATION 

Following [ 4-n, we regard the change in the en­
ergy of a bound optical electron in an atom as a 
diffusion process, assuming that the energy changes 
.quasi-continuously. The corresponding expression 
for the flux, obtained from the Fokker-Planck 
equation, has under stationary conditions the 
form[ 51 

j = B(E)g(E)'(fJj I fJE- !/ kT8 ), (10) 

B(E) = 1l2fJ(M2) I fJt. (11) 

is the diffusion coefficient, proportional to the rms 
change in the energy of the bound state per unit 
time. The density g(E) of the number of states 

can be related with the statistical weight of an in­
dividual state by means of 

g(En) = gnn2 (n + 1)2 I (2n + 1)Ry. 

Substituting in (10) f = [1:a(f)r1 y(E) 
x exp (E/kTe), we obtain its solution under the 
boundary conditions y(E1) = 1 and y(O) = y~: 

. 1- Ye2 
l =-~a (f) foE'' 

where 
b 

I b = ~ exp(-E/kTe) dE 
a a B(E)g(E) . 

(12) 

(13) 

The validity of the obtained expressions for the 
lower excited states is doubtful, since the jump­
like change in energy during the transitions is very 
significant here. At the same time, the structure 
of (13) is very similar to that of formulas (8) of the 
one-quantum approximation, where the discrete­
ness is taken into account correctly. Using this 
analogy, let us attempt to modify (13) somewhat in 
a way as to take into account the discreteness of 
the atomic levels. To this end we substitute in (13) 
g(E) as given by (12), make the substitution 

dE-+ !!E-+ En- En+t = (2n + 1)Ry I n2 (n + 1) 2 

and go over from integration with respect to E to 
summation with respect to n. We obtain 

1- Ye2 ~i" + y.2~1i-i 
(14) i=--=--, Y;= 

~a(/)~t" ~1· 

where 

~;j=~ 
exp(- E/kTe) B(En) 

(15) Wn= 
(En- En+t) 2 

n=i 
gnwn 

We see that (14) differs from (8) only in that 
wn is replaced by wn,n+i· This is connected with 
the fact that in (14), derived on the basis of the 
Fokker-Planck equation, we took approximate ac­
count of the transitions i- i ± k (k :::: 2), which 
are completely excluded in the one-quantum ap­
proximation. Naturally, if we go over in (14) to a 
quasi-continuous energy variation then, as follows 
from the derivation of (14), it goes over into the 
solution of the Fokker-Planck equation (13). 

If the energy of the bound electron changes 
upon collision with the free electrons, the quantity 
wn connected with the diffusion coefficient can 
be calculated. This greatly facilitates the calcula­
tions. We represent B n(En) in the form 

1 1 ------:---' . 
Be(En) =-~ (En- Eh) 2Wnh =-~ (En- Ek) 2GnkV, 

2 h 2 k 

(16) 
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O"nk is the cross section of the transition n- k, 
and the bar denotes averaging over the distribution 
of the free electrons. Let us use for O" nk the 
Bethe-Born approximation: [ 11 l 

Be(En) = 4nNe ~~I (En- E,.)21 (x)n~tl 2 (~ rdq, (17) 
11 fw, q 

where v is the velocity of the free electron, q the 
momentum transfer, and (x)nk the matrix element 
of the dipole-moment projection. In the one-elec­
tron approximation the sum over k is calculated 
in general form: 

~ 2m 
LJ (En- E,.)21 (x)n~tl 2 =-En. 
k 3 

(18) 

We then obtain for the ground state 

8 1/2n AeWeEt ( Et- E2 \ 
Be(Et) = . · exp - I. 

3"YmkTe \ kTe 1 

(19) 

In the integration with respect to v we took ac­
count of the fact that the transitions from the 
ground state can be made by electrons whose en­
ergy is not lower than E1 - E2• Let us extrapolate 
(19) to arbitrary En, i.e., let us assume that 

BE ,_,Bi~AeWeEnex (-En-En+tj 
e( n) ,_, 31/mkTe p ' kTe ) . 

(20) 

Such an extrapolation is possible, for Eq. (20) goes 
over into (19) when En- E1. On the other hand, 
for small En the exponential factor is insignificant 
and (2) coincides with the value of Be obtained 
in [ 7l, where the collision of the free and bound 
electrons was considered quasi-classically. Using 
(20), we find that 

_ 4 y2n AeWeEn ( En- En+t) 
Wn = exp -

31/mkTe(En- En+t) 2 kTe 

_- ( En - En+i .) 
= VO'n exp - kTe ' (21) 

and from (14) we get 

(22) 

where 

Q;i = ± exp(-En+t/kTe). 
gnO'n 

(22') 

We see that (22) goes over into (9) if an is re­
placed by an, n+t. 

Calculation of the relative concentrations by 
means of (22) is quite simple. We note that for a 
multicomponent plasma it is necessary to take 
YeYN+,in place of y~, where N+ is the concentra­
tion of the ions of the given species. 

From the form of (22) we can deduce that the 
y~ for different atoms should not differ much un­
der similar conditions, since the individual proper­
ties of the atoms become smoothed out to a con­
siderable degree when sums over a large number 
of states are calculated. 

At sufficiently low temperatures, we can sim­
plify formula (22). Indeed, in this case the func­
tion under the summation sign in (22') has a max­
imum when n » 1, and the contribution of terms 
with small n to the sums in (22) is exponentially 
small. Therefore for small n the second term in 
the numerator of (22) plays no role and Yi ~ 1. 
Taking this into account, we can replace the sum­
mation in (22) by integration without excessive er­
ror, i.e., as indicated above, we can go over from 
(22) to (13). Putting gn = 2n2 and using (20), we 
obtain from (13) 

where 

Yi = q> ( kiJ+ Ye2 [ 1- cp ( ~.)]. (23) 

- 2e-ry'x (2 ) 
q>(x) = <1>(1/x)- ---- -x+ 1 , 

Yn 3 

2 X 

<D (lx) =--=- \ e-t' dt. 
in · 

0 

If we leave out the first term of (23), i.e., we dis­
regard the excitation processes, we arrive at the 
result obtained by Gurevich[7l for electron-ion 
recombination. 

The results can be used also to calculate the 
recombination and ionization coefficients. 

DISCUSSION OF RESULTS; COMPARISON WITH 
EXPERIMENT 

Our results are based on a number of assump­
tions. Let us compare them with the published nu­
merical solutions of the system of balance equa­
tions. [1-Sl Thus, results of computer calculations 
for a hydrogen plasma were represented in [ tl in 
the form 

Yi = rt' (i) + Ye2re' (i). 

The coefficients rf and re were tabulated. We 
compared them3> with the coefficients r 1 and re 
introduced by us in (22) and obtained perfectly 
satisfactory agreement. The discrepancies did not 
go beyond the limits of the accuracy with which the 

3 >The coefficients r', and r' e depend on Ne, since rela­
tive processes were taken into account in their calcula-
tion in [']. We compared them for sufficiently large Ne, when 
the radiative processes play no role. 
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FIG. 1. Plot of y vs. 
E for hydrogen (formula 
(22)). Curves 1, 2, and 
3 correspond to temper­
atures T e = 12000, 
8700, and 5000°K. (The 
energy is reckoned from 
the ground state.) 

effective cross sections used in the calculations of 
[ 1 J are known. This confirms the correctness of 
our assumptions. 

Let us turn to Eq. (22) for y. For fixed y J the 
value of y depends on the temperature T e· Fig­
ure 1 shows a plot of y against E for hydrogen at 
different Te and for two values of y~, 10-2 and 102• 

We see that for recombination (y~ = 102 » 1) 
most excited states are in relative equilibrium 
with the continuous spectrum Yi r;:; y~, [ 14 ] and that 
the number of such states increases with increas­
ing temperature. This phenomenon was observed 
experimentally in recombination decay of a helium 
plasma. [ 15] 

The situation is different if ionization predom­
inates, y~ « 1. The distribution of the atoms over 
the states differs strongly from equilibrium. Only 
the strongly excited states are in equilibrium with 
the continuous spectrum. At low temperatures a 
tendency is observed to establishment of a relative 
equilibrium between the ground and first-excited 
state Yi r;:; 1. We see that for many states (i = 3-7) 
we have approximately ln y ~ E, so that we can 
speak of a quasi-Boltzmann distribution with a 
temperature lower than that of the electrons. 

Such nonequilibrium distributions of the atoms 
over the excited states were observed experimen­
tally in arcs at atmospheric pressure. [ 9, 10 J The 
most complete measurements, which permit a 
comparison of the results with the experimental 
data, were made by Kolesnikov. [ 9] He calculated 
the excited-state distribution ofthe atoms in an 
arc-discharge plasma in an argon atmosphere 
(NAr = 2 x 1018 em -3) to which hydrogen was 
added (NH = 1.6 x 1017 em - 3). The local values of 
the concentrations of the atoms and electrons are 
given in [ 9] for a current i = 4A (Ne = 2 x 1015 em - 1 

on the axis). Unfortunately, Kolesnikov measured 
at this current only the electron temperature 
averaged over the arc column (Te = 8700 ± 200 o K). 
However, knowing this average value, the charac-

ter of the averaging made during the measurement, 
and the relative variation of the electron tempera­
ture in the radial direction (from measurements at 
other currents made in [ 9]), we can obtain the local 
values. The electron temperature on the arc axis 
was approximately 9300 o K. We shall henceforth 
speak exclusively of local values of the measured 
quantities, taken on the axis of the arc. 

Kolesnikov[ 9 J established that the investigated 
plasma is not in equilibrium, and that the excited­
state distribution of the atoms is quasi-Boltzmann 
with a temperature much lower than that of the 
electron, and quite close to that of the atoms 
(Ta = 3300 o K). On this basis he proposed that the 
excited-state distribution of the atoms is deter­
mined by elastic collisions with the atoms. 

It seems to us that in this case the atomic col­
lisions are not the cause of such a distribution. In 
fact, a similar situation can arise also if the con­
centration of the charged particle is much lower 
than the values calculated from the Saha formula 
with T e· Using the data on the equilibrium compo­
sition of the investigated plasma given in [ 9] we 
find that actually, on the axis, YeYAr+ r;:; YeYH+ 
r;:; 1. 3 x 10-2 (y Ar + and YH+ are the relative con­
centrations of the ions Ar and H). An investiga­
tion of the causes of the latter circumstance is al­
ready beyond the scope of this paper, since we 
are interested only in the distribution of the atoms 
over the excited states. We note, however, that 
this can be brought about by diffusion of the elec­
trons from the central hot parts of the arc channel 
to the cold peripheral regions, where they recom­
bine. The neutral particles become ionized there 
when they penetrate from the peripheral regions 
into the central ones. 

Estimates show that under the conditions in 
question the kinetics of production and annihilation 
of the excited states are determined by collisions 
with the electrons. The radiative processes are 
not essential for the reasons indicated above. Col­
lisions with atoms, for transitions between the 
ground and excited states, are not effective com­
pared with the electrons. As regards the efficacy 
of these collisions for transitions between excited 
states, indirect data canbe obtained here by com­
paring the diffusion coefficients Be(E) and Ba(E) 
(formula (A.1) of the Appendix). The atomic colli­
sions could compete here with the electronic ones 
only if the cross sections were exceedingly high, 
a~ 10-13 em 2 (here a is the transport cross sec­
tion for the scattering of a slow electron by an 
atom). Thus, under these conditions the atomic 
collisions are apparently insignificant for all val­
ues of the bound-state energy. 
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Consequently, we shall use (22) to determine the 
concentrations of the excited atoms. The values of 
y for hydrogen, calculated from (22), are shown in 
Fig. 2, which shows also the points corresponding 
to experimentally measured hydrogen concentra­
tions at the levels with i = 3, 4, 5, and 6. We see 
that theory and experiment agree satisfactorily. 
A variation of ± 200 o K in the electron temperature 
on the axis led to no significant differences. 

We note that in a recent paper by Keck and Car­
rier[ 161 devoted to related problems, but as ap­
plied principally to molecules, nonequilibrium dis­
tributions of the particles over the vibrational 
states were obtained for different model potentials, 
using either the one-quantum approximation or the 
Fokker-Planck equation. In particular, the distri­
bution obtained _with the aid of the Fokker-Planck 
equation for a classical Coulomb oscillator, is 
used by the authors for the determination of the 
concentration of the excited atoms. In spite of the 
fact that such a model is rather crude, surprising 
agreement with experiment was obtained. [ 151 We 
have noted that under the conditions given in [ 151 

the concentration of the atoms at the upper excited 
levels were in equilibrium with the electrons, and 
therefore the agreement of the results still does 
not confirm the theory. For the lower excited 
states, whose populations are essentially not in 
equilibrium, there can be no agreement in princi­
ple, since the radiative processes can by no means 
be neglected for them. On the other hand, they are 
not considered in the theoretical paper. [ 161 

In conclusion, the author is sincerely grateful 
to L. M. Biberman and I. T. Yakubov for discus­
sions and help with the work. 

y 

IJ j E,eV 

IH 
FIG. 2. Comparison of the experimental and calculated 

values of y on the arc axis. The points correspond to the H 
concentrations measured in [14], The solid curve was calcu­
lated from (23), T e = 9300°K, YeYH+ = 1.3 x 10-3 • The arrow 
indicates the ionization potential. (The energy is reckoned 
from the ground state.) 

tities characterize an atomic collision). In particu­
lar, at low temperature we obtain in place of (23) 

Yi = Z (ik:: )+ Ye2 [ 1-Z ( :;J], (A.2) 

where Z(x) = 1- e-x (1 + x). It is necessary to 
satisfy here the condition En/kT a ~ 1 for n » 1. 

However, more interesting conditions are those 
when the collisions with electrons and atoms must 
be taken into account simultaneously. In this case 
it is important to find the distribution function F0 

at which j = 0. It will not be an equilibrium func­
tion, because T a f. T e· Physically, the equation 
j = 0 denotes that a chemical equilibrium was es­
tablished in the nonequilibrium system, i.e., the 
total number of ionization acts is equal to the num­
ber of recombination acts. F0 plays the role so to 
speak of a "quasi-equilibrium" distribution func­
tion in the presence of two temperatures. Let us 
find F0 in the one-quantum approximation. We 
write the flux in the presence of collisions with the 
electrons and the atoms: 

j/Na = Ni(wti+i + Wi~ i+i)- NiH(w/'+1, i + wt+i, i). (A. 3) 

APPENDIX Solving (A.3) for j = 0 we obtain 

COLLISIONS WITH A TOMS 

Conditions are possible, under which the energy 
of the bound state is changed by collisions with 
atoms (in the ground state). The diffusion coeffi­
cient Ba(E) for weakly-bound states was calculated 
by Pitaevski1: [ 151 

Ba(E) = 128-(2(kTa)YmaNaE'h / 3nM, (A.1) 

where u is the transport cross section for the 
scattering of an electron by an atom and M is the 
mass of the atom. (A.1) is valid if kTa 
« -./m/Me2/a (a is the dimension of the atom). For 
this case we can use expressions (8) and (14), in 
which we make the substitutions Te- Ta, B- Ba, 
and wk- w~ (the index a denotes that these quan-

(A.4) 

where 

(A.5) 

In the derivation of (A.6) we used (9a). From (A. 5) 
and (A. 4) we see that when T e = T a (A. 4) goes over 
into the usual Boltzmann formula. We can find 
directly from (A. 5) the conditions under which 
atomic collisions can be neglected. 
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It can be shown that if we make in (A. 5) the 
substitution un, n+ 1 - an and then go over to 
quasi-continuous variation of the energy, then the 
F0 obtained in this manner will coincide with the 
F0 derived directly from the Fokker-Planck equa­
tion in which account is taken of collisions with 
two types of particle. 

Knowing F0, we can solve the "non-equilib­
rium" problem, when j =/- 0. It is convenient to in­
troduce the relative concentrations, which are now 
referred to the distribution function F0: 

J (E;) = N; I N;(Fo), (A.6) 

where Ni(F0) is the concentration of the atoms at 
the level i, calculated with the distribution func­
tion F0; formally j and J(Ei) are obtained from 
(14) by making the substitutions 
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