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The factors governing the efficiency of waveguide propagation of a real laser beam in a medium 
whose refractive index depends on the intensity of the propagating wave are discussed. The ef
fects due to the finite duration of the laser pulse are analyzed in detail. The evolution of the opti
cal waveguide in time and space is investigated theoretically in the quasioptical approximation by 
taking into account the inertia of the nonlinear properties of the medium. The development 
("growth") rate of the optical waveguide is calculated. In the general case it is found to depend 
on the coordinate. The results can be used to calculate the length of the optical waveguide pro
duced in a nonlinear medium by a laser pulse and to estimate the fraction of light energy moving 
along the waveguide (the efficiency of the self-trapping process). 

J. PHENOMENA of waveguide propagation and 
self-focusing of powerful light beams in a medium 
whose refractive index depends on the intensity of 
the propagating wave are, as shown by recent the
oretical [ 1- 7 J and experimental (for example, [ 8- 10 J) 
investigations, of exceedingly great interest for 
nonlinear optics. Allowance for the variation of 
the form of the phase front and the form and diam
eter of the light beam, due to self-focusing, is 
essential in many studies of the behavior of a pow
erful laser beam in a material medium (see [ 6, 10 J). 

These effects can, in particular, explain certain 
anomalies observed in stimulated scattering (see 
[6,9,10]). 

It must be noted that although the cited theoret
ical papers contain detailed studies of many as
pects of self-focusing and waveguide propagation, 
the factors that determine the energy efficiency of 
these processes still remain unclear. The latter 
is a particularly vital question in view of the fact 
that the available experimental data offer evidence 
of a relatively Jow energy yield: according to the 
data given in [ 8 ' 10 J, the fraction of the laser-pulse 
energy which becomes self-focused in a linear me
dium is relatively small. This can be attributed to 
two factors: 

a) The inhomogeneity of the distribution of the 
intensity over the transverse section of the laser 
beam, causing the latter not to be self-focused as 
a unit but to become stratified. 

b) The finite relaxation time of nonlinear polar
ization, which causes the rate of development 

("growth") of the optical waveguide to differ from 
the speed of light; obviously the role of this factor 
is particularly important in the self-focusing of 
short laser pulses. 

For a quantitative investigation of effects con
nected with the finite duration of the pulse it is ob
viously necessary, unlike in [ 1- 6J, to solve the 
nonstationary problem. 

2. The subject of the present paper is a theo
retical investigation of nonstationary waveguide 
propagation of a laser pulse of finite duration T P 
in a nonlinear medium whose inertial nonlinearity 
properties can be characterized by a nonlinear 
polarization relaxation time T. We note that a 
qualitative discussion of this problem was recently 
presented by Zel'dovich and Ra1zer;[ 7J the expres
sion given by them for the rate of "growth" of the 
optical waveguide: 

u = z dif I 't', where zfdif' = kro2 

is the so-called diffraction length and r 0 is the 
radius of the produced waveguide, which will be 
shown later to be valid in the Fresnel zone and for 
sufficiently large T. 

3. Assume that at the instant t == 0 a cylindri
cal light beam, whose power is equal to the criti
cal power (see [3• 5• 6 J) necessary for waveguide 
propagation, enters the nonlinear medium at z == 0. 
If the channel diameter amounts to dozens of wave
lengths and more, then the process of wave propa
gation is described approximately by the quasi
optics equations (see [ 5• 6J ): 
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1 aA aA as aA A ( iJ2s 1 as ) --+-+---+- -+-- =0, (1) vat az arar 2 iJr2 ror 

where n2p is the nonlinear part in the refractive 
index. We assume that the time dependence of the 
polarization p is determined by a relaxation equa
tion of the form1> 

'top 1 at+ p = A2• (1a) 

In Eqs. (1) and (1a), A is the wave amplitude and 
s is a correction to the eikonal of the plane wave, 

i.e.' 

E = eA exp {i((l).t- kz- ks) }, 

v = wlk is the wave propagation velocity in the 
linear medium, and T is the inertia time of the 
nonlinear response of the medium. 

We introduce in place of t a new independent 
variable ~ = t - zlv; then we have in place of (1) 
the system 

aA + OS aA + ~ ( o2s + ~ OS ) = 0, 
az or or 2 ar2 r ar 

the first two equations of which have the same 
form as in the case of the stationary problem 

(2) 

(see [ 61 ); the inertia of the nonlinear polarization is 
taken into account by the third equation. 

We seek the solution of the system (2) in the 
form of a spherical wave with variable radius of 
curvature: 

Eo2 (6) [ r2 J 
A 2 = -f-(z-, 6~) exp - -ro-=-2f=-(:-z,-=6-:-) 

with boundary conditions at z = 0: 

~(0, t) = 0, cp(O, t) = 0, j(O, t) = 1; 

(3) 

E~2 (t) = {E02 for: 0 ~ t ~ 'tp. 
0 for~ t < 0 (4) 

Confining ourselves to the section of the beam 

1)If the dependence of the refractive index on the wave in
tensity is connected with the Kerr effect, then p is propor
tional to the corresponding component of the anisotropy ten
sor. 

near the axis, we find the equation for the function 
f(z, ~) that characterizes the variation of the width 
of the beam and its amplitude: 

6 
1 .82/ 1 n2E 02 1 ~ 1 ( ..., l:: ) 'I~;, dro. (5} j iJz2 = k2ro4f . - noro2 T- ~~ exp ., 

0 

Equation (5) differs from the analogous equation of 
the stationary theory of waveguide propagation of 
light in having a time-dependent integral in the 
nonlinear term; it is easy to see that the role of 
the nonstationary processes is determined by the 
relation between ~ and T. 

Let us verify first that (5) describes the limiting 
cases of a beam propagating in a linear medium, 
and of the stationary self-trapping beam considered 
in [2,31. 

4. The nonlinearity of the medium does not in
fluence the propagation of the beam when ~ « T. 

The last term in (5) can be neglected here and the 
function 

f(z) = (z I z.dif ) 2 + 1 (6) 

describes the smearing of the beam due to the dif
fraction divergence; A2 ~ C 2• The foregoing means 
that the frontal part of the laser pulse, corre
sponding to ~ « T (if the pulse duration : P « T, 

then this pertains to the entire pulse), does not be
come self-trapped in a medium with inertial non
linearity. 

It is also easy to see that the stationary mode 
of the waveguide propagation of light, wherein the 
function f does not depend on z, is attained only 
for sufficiently large ~. Indeed, let 8f/8z = 0. Then, 
recognizing that the power of the beam, in accord
ance with the conditions of our problem, is equal to 
the critical power (n2EVno = 1/k2rg ), we arrive at 
the equation 

~ 

~ = ~ ~ ~ exp ( '11 - 6 ) d't'], 
f4 'tot 't 

(7) 

which is satisfied if f = 1 and ~- co. 

5. To analyze the phenomena in the region 
where the optical waveguide is formed, we take ac
count of the fact that, by virtue of the arguments 
presented above, the function f (the beam width) 
depends little on the variable ~; therefore we can 
take it out of the integral sign in (5). Then, solving 
the ordinary differential equation for f, we obtain 

f(z, 6) = (z / Zdif·) 2 exp ( -6/ 't) + 1; 0 ~ 6 ~ 'tp (8) 

(we note that the solution (8) describes also the 
limiting cases indicated above). 

Using (8), we can determine the rate of 
''growth'' of the waveguide from the condition 
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f = const. For simplicity we put f2 = 2, corre
sponding to z = Zdif when ~ = 0. By virtue of (a) 
the equality f2 = 2 is conserved if the following 
relation is satisfied 

t - z I v = 2-rln ( z I z ctif). (9) 

Relation (9) pertains to the region z ?: Zdif and 
connects the length of the optical waveguide z with 
the time of its development t. For the rate of 
growth of the waveguide u we obtain from (9) 

1 I u = 1 I v + 21: I z. (10) 

According to (10), when T = 0 the rate of growth 
of the waveguide is equal to the speed of light 
(u = v); when T -I 0 we have u < v, and the rate of 
growth decreases with increasing T. 

We note that the velocity u, determined from 
(10), coincides with the velocity given in [ 71 only 
when z = Zdif and 2T I zdif » 1 /v. The difference 
between the rate of growth and the speed of light 
causes the length of the optical waveguide pro
duced within the time of the laser pulse to be 
smaller than the distance traversed by the wave, 
and consequently only part of the laser-pulse en
ergy is self-trapped (see the figure). Using (9) and 
(10) we obtain for the length of the optical wave
guide L, produced after a time T P' the equation 

L + 21:V ln ,(£I Zctif) = 1:pv, (11) 

and for the energy efficiency 7J of the self-trapping 
process, which is equal to the ratio of the light en
ergy transported along the waveguide to the total 
energy of the light pulse, we get 

f]=1-2(1:11:v)ln(zlzdif); z~zdif· (12) 

By virtue of the difference between the veloci-

Phase of development of the self-trapped optical wave
guide by a powerful light wave. The waveguide part of the 
beam is shaded; the dashed lines show the shape of the 
beam in the absence of nonlinearity. The maximum length 
of the waveguide L is attained at the instant of termina-
tion of the pulse t = rp. After t > tp, the waveguide be-
comes detached from the boundary z = 0 and its length 
decreases as the wave propagates, since u < v. When 
z = zcr the waveguide vanishes. 

ties u and v at z = Zcr = Zdif exp (Tp/2T), the op
tical waveguide vanishes-the wave becomes de
tached from the waveguide. Formulas (8)-(12) 
yield quantitative estimates for the different ex
perimental situations. As follows from the fore
going calculation, the role of the inertial effects 
is determined by the values of T, T/TP' and 
z/zdif~ 

If the mechanism responsible for the waveguide 
propagation of the light is the high-frequency Kerr 
effect (the oFientation of the anisotropic molecules 
in the light field), then for typical low-viscosity 
liquids T ~ 10-12 sec and the inertia effects are 
significant at sufficiently small Zdif ~ A. (r0 ~A.). 

If the waveguide propagation is due to electrostric
tion, then Eq. (1a) must generally speaking be re
placed l;>Y the wave equation for sound pressure, 
but an approximate estimate can be obtained by 
putting in (1a) T = r 0/vs, where Vs is the speed of 
sound. In this case the inertia effects are quite 
appreciable; it can be assumed that these are pre
cisely the cause of the experimentally observed [ 10 1 

strong correlation of self-focusing properties of 
liquids with the Kerr-effect constant. 

In conclusion we note that by using Eq. (5) we 
can analyze also the more general case when a 
wave with non-plane phase front ({3(0, t) = 1/R) and 
a power different from critical enters into a non
linear medium. 

We are grateful to Ya. B. Zel'dovich and Yu. P. 
Ra'lzer, who were kind enough to supply the manu
script of their paper[ 71 prior to publication. 
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