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It is shown that in the case of a strong electric field a two-band equation should be employed to 
analyze the motion of electrons in crossed electric and magnetic fields Ex and Hz. In the sim
plest case this equation differs from the Dirac equation only in that the limiting velocity is not 
c but s = (Eg/2m)112• In this case, the electron motion for sHz/CEx < 1 is infinite, just as for 
Hz = 0, and the decrease of the tunnel current is due to a decrease in the effective field E = (E~ 
- s2H~/c2) 112 • When sHz/cEx ;::;: 1, the electron motion is finite and direct transitions in a homo
geneous electric field are forbidden by the energy and momentum conservation laws. The effect 
of a magnetic field and of deformation on the current in crystals of the PbTe, PbSe and PbS type, 
where the constant-energy surfaces are ellipsoids, is considered. The results of the calculations 
are compared with the experimental data of Rediker and Calawa for PbTe. 

1. INTRODUCTION 

THE change of the tunnel current in a magnetic 
field was investigated in several experiments, [ 1- 61 

where it was established that the tunnel current de
creases with increasing magnetic field-more 
rapidly in a transverse field and more slowly in a 
longitudinal one, when the magnetic and the elec
tric fields are parallel. The theory of tunneling in 
a longitudinal magnetic field, developed in [ 1, 7-Sl, 
explains satisfactorily the experimentally ob
served regularities. This theory differs in fact 
from the tunneling theory developed by Keldysh [ 10 1 

and refined by Franz[Hl and Kane[ 121 only in that 
account is taken of the Landau quantization, which 
leads to formation of magnetic subbands. 

Theoretical estimates of the current in a trans
verse magnetic field were made by Haering and 
Adams, [ 11 who proposed that Landau quantization 
always takes place when an electron moves in 
crossed fields, and described the electrons and 
holes by the ordinary single-band equations in the 
effective-mass approximation. Yet whereas such 
an approach is indeed valid for the motion of elec
trons in a longitudinal field, when the electron ro
tates in a plane perpendicular to the electric field, 
this approximation is not suitable in crossed fields 
when the electric field is strong. Indeed, in this 
case and when Ex/Hz > c-1(Eg/m) 1/ 2, the energy 
corresponding to the drift velocity vy = cEx/Hz, 
which is equal to ( 1/ 2)mc2(Ex/Hz)2, as well as the 
energy acquired by the electron on the Larmor or
bit as it rotates in the plane of the field Ex, which 

is equal to mc2(Ex/Hz)2, exceeds the width of the 
forbidden band Eg. This estimate shows that when 
we consider the motion of electrons in crossed 
fields in a strong electric field, the deviation of 
the spectrum from parabolic plays the principal 
role. Therefore the calculation of the tunnel cur
rent in a transverse magnetic field cannot be car
ried out in the effective-mass approximation. At 
the same time, these calculations are not neces
sary to know the form of the spectrum in the en
tire allowed band, since an appreciable role is 
played only by the energies comparable with the 
width of the forbidden band. It would therefore be 
consistent to solve this problem by using the two
band model. In such a model, both bands are as
sumed to be unlimited, thus avoiding difficulties 
arising when exact account is taken of the quanti
zation connected with the periodic dependence of 
the energy on the quasimomentum. We note that 
owing to the finite mean free path of the electron 
and of the hole, and also owing to the limited di
mensions of the p-n junction, [ 91 this quantization 
is a physically unobservable effect. 

2. THE TUNNEL CURRENT 

The concrete form of the two-band model is de
termined by the symmetry of the crystal and by 
the position of the extremum point. The simplest 
two-band equation for nondegenerate bands coin
cides in form with the Dirac equation, differing 
from it only in that the speed of light c is replaced 
by the quantity 
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TUNNEL CURRENT IN A TRANSVERSE MAGNETIC FIELD 189 

s =1 (eg / 2m)'l•, (1) 

and the effective masses of the electron and of the 
hole are the same in this approximation and are 
equal to m. Such an equation, as noted in [ 13 J , 

would be valid for crystals of the Ge or InSb type 
with the sign of the spin-orbit splitting of the va
lence band reversed, provided, of course, we neg
lect the interaction with the other bands as well as 
the terms of order m/m0, where m 0 is the mass 
of the free electron. 

For several crystals in which the extrema of 
both bands are located on the edge of the Brillouin 
zone, for example PbSe, PbTe, and PbS, the near
est bands in each extremum are described in this 
approximation by an equation which differs from 
the Dirac equation only in the anisotropy of the ef
fective masses. As shown in Appendix A, by suit
ably transforming the coordinates we can reduce 
this equation to the usual form 

{ms2p3 + p1s(P'a)} 'I'= {e + e<D' (r')} 'I'. (2) 

Here e is the charge of the electron 

PI= I~ ~I, 

PC -- I 0 - if I I I 0 I I Ci; 0 I " , P3 = , a; = , 
il 0 0 -I 0 a; 

where CJ i are two-by-two Pauli matrices and I is 
a unit matrix. These matrices satisfy the following 
relations: 

PiPit = b;~t + ie;~tiPL, . a;alt = b;lt + ie;~tzaz, 
{p;, Cilt} = o. (3) 

In this case s is determined by the state-density 
effective mass: 

In Eq. (2) it is convenient to introduce in lieu 
of the usual vector potential A the potential A' 
= (s/c)A, and accordingly replace the vector H 
by 

H' =_!_H. 
c 

(4) 

(5) 

Then the momentum operator P' is defined by the 
expression 

P' = - iii - 8- - _!!___A', 
fJx' s (6) 

which differs from the usual one by replacement of 
c by s and of A by A'. Equation (2) is invariant 
to a transformation that differs from the Lorentz 
transformation only in that c is replaced by s. 
The components E' and H' are transformed here 

like the components of the four-dimensional field 
tensor in relativity theory. Since this transforma
tion leaves invariant the quantities E'2 - H'2 and 
(E' • H'), we can, if H' 1 E', eliminate the electric 
field when H' > E' and eliminate the magnetic 
field when E' > H', by choosing a suitable moving 
coordinate system. 

For concreteness let the reduced electric field 
E', which in the usual case is equal to 

(7) 

be directed along the x' axis, and let the reduced 
magnetic field, which is equal to 

s ( mx my mz \ '/• 
H'=- Hx2--+Hi--· +H.2-) ' 

c m m m, (8) 

be directed along the z' axis. Here Ei and Hi are 
the components of the vectors along the principal 
axes of the corresponding ellipsoid. In the former 
case, i.e., when {3 = H' /E' > 1, we have in a coordi
nate system moving with velocity s/{3 along the 
y' axis 

E = 0, H = H'(1- ~-2)'t.. 

In the second case, i.e., when {3 < 1, in a coordi
nate system moving with velocity {3s, we have 

(9) 

H = 0, E = E'(1- ~2)'t. = (E'2 -H'2 )'t.. (10) 

In this moving coordinate system Eq. (2) is 
written 

ieo'l' = { ms2p3 + /ispi(ka) + ieE 8: }w = e'l'. (11) 

We have gone over here directly to the k-repre
sentation, and to abbreviate the notation we tagged 
all the quantities in the moving coordinate system 
with unprimed indices. Although Eq. (11) can be 
solved exactly, it is more convenient for us to cal
culate the tunnel current, i.e., the current con
nected with transitions between bands, by using 
not this exact solution, but an approximate solu
tion, which describes the quasistationary states of 
the electron in the valence band and in the conduc
tion band. To this end we should go over to the 
representation in which the operator de 0 in (11) is 
diagonal when E = 0, and to calculate the interband 
matrix elements of the operator x. 

The transition to this representation can be re
alized with the aid of a transformation similar to 
the Foldy-Wouthuysen transformation: [ 14 J T = eiS, 
where 

( ak) lik 
S = p2 ~arctg ms, (12)* 

*arct g = tan_,. 
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;s _ (TJ + 1 )''• . (ok) (TJ -1 )''• e - -- +zP2-- ---
21') k 21') 

Here 

TJ = ( 1 + Ji2k2 1 m2s2) '''· 

In this representation 

(13) 

(14) 

and the operator x = - i8/8k is equal in the new 
representation, in accordance with (13), to 

_ . . . a TJ - 1 (ok] 
X- ezs xe-zs = - z-- ____, __ 

- ak 2, k2 

+ ___!!~ {TJ (k {ka]]- k ( ak)}. 
2ms,2k2 (16)** 

The operator X includes both the intraband 
term X3 and the intraband terms, including the 
second term X2, which describes the term split
ting in the electric field, due to spin-orbit interac
tion. The role of the term X2, as will be shown be
low, is small, but since it has a singularity at the 
same point 1J = 0 as the interband term X 3, we 
shall not omit it immediately and estimate its con
tribution more accurately. 

When E II x, we use a transformation S similar 
to ( 12), namely 

- O'x kz 
8= --arctg-

2 ky' 
(17) 

to diagonalize the operator .'Jt with accuracy to the 
intraband terms, and obtain in this representation 
for the components of the spinor w[ (k) the equa
tion 

(18) 

Here the index i denotes the number of the band 
(1-valence, 2-conduction), and the ± sign denotes 
the spin. At the same time 

(19) 

where 

~ = E TJ- ~ k.L 
e 21'] k2 ' 

(20) 

Recognizing that 

e2iB = {ky + iaxkz) I k.L, (21) 

**[ka] = k x a; (ak) =(a· k). 

we find that in the same representation the inter
band operator !Je' is equal to 

A li 
;Jt' = eEX3 = eE P2 ..,.----

2ms7J2k2 

The solution of (18) is of the form 

(22) 

kx 

'l'i± = (eELx(1'exp fe~ ~ (s- s;± (k)) dkx}c'lky~y'c'lkzkz'· 
0 

(23) 

The functions Wf(kx, ky, and kz) are characterized 
by four quantum numbers k~, k~, and E , which we 
designate by a single index p,, and the spin. The 
normalization factor in (23) is chosen to normalize 
the functions w[ to energy a-functions: 

~ qr;flo. (k) 'I' ill-" (k) 
kxkykz 

As seen from (22), in the chosen representation 
the operator :/i:' causes only transitions with spin 
flip, and the corresponding transition probabilities 
are 

(25) 

where 

Rx 

{ 2" 
exp e~ ~ (msZ, + ~)dkx). (26) 

0 

To calculate the integral (26) we introduce the 
dimensionless variables 

kx 
X=q' 

k.L ms 
y =-q, a= hq ' 

Ji2q2 = (ms)2 + (1ik.L)2. (27) 

In these variables the argument of the exponent in 
(26) is 

X{ y 
cp(x) = i~ a(1 + x2) ''• ± [1- a(1 + X 2)-'1•] x2 + yz 

0 

}ax. 
(28) 
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The integral (26) along the arc in the upper half
plane vanishes, and we can deform the integration 
contour, as shown by the solid line in Fig. 1, and 
direct the cut in the upper half-plane upward from 
the point x = i along the imaginary axis. When 
/:::, = 0 the saddle point is Yl = 0, i.e., x0 = exp (i1r /2). 
When b. =f. 0, the saddle points shift, but when y « 1 
this shift is small and we can carry out the expan
sion about x = x0• We put x = Xo + ~, and represent 
the integral cp (x) in the form 

o:o o:o+~ 

rp(x)= ~ + ~ =<p(xo)+<p(£). 
0 Xo 

Then, neglecting terms of higher order in ~, we 
obtain 

a . y 
<p (x) = <p (xo) + -3- (2£) 'f, et3Jt/4 ± 

y-1 

Since in the integral (26) the important values are 
~ ~ a-2/ 3, the last terms are of the order of ya-113 

and can be neglected. It is easy to verify in exactly 
the same way that the contribution made to the in
tegral cp(XQ) from the second term in (28) is of the 
order of y. As will be shown later, an appreciable 
contribution to the current is made by the values 
y ~ a-112 and consequently, with accuracy to y2 

~ 1/a, these terms can be neglected, as well as 
the third term in (26), which makes a contribution 
~ a-2/ 3• Then 

i 

<p(x0) = ia \ -yi + x 2 dx =- _na. 
0 4 

Expanding the pre-exponential factor in (26) near 
x0, neglecting terms of higher order in ~, and also 
terms containing y, we obtain 

I±= -~e-nal> \ d£ exp{~ (2£)'hei3ni•}. (29) 
4 . £ 3 

Putting ~ = r exp (ie) we find that the steepest
descent lines are the rays corresponding to e = 1r /6, 
and e = -77f /6, the angle between which is 47r/3 
(Fig. 1). The integrals in (29) along these rays 
cancel each other and all that remains is the inte
gral along the contour, which is equal to 47ri/3. 
Consequently 

(30) 

In order to find the probability of the transition 
of the electron with a given energy E', k_),, k~, and 

spin, it is necessary to sum (25) over all values 
of ky and k'~ and integrate with respect to E ". 

According to (25) and (30), we obtain 

(31) 

II 
II 
II . 

X=ty 

FIG. 1 

(.X) 

To calculate this electron flux I in a time t and 
in a volume V = LxL Lz, we sum (31) over all 
values of k'y• k~, anlthe spin and integrate over 
the energy. Recognizing that 

~ de'= eELx, (32) 

we obtain from (27) 

Vt eE 00
) { nlis ( m2s2 )} I=---- exp --- -~ + kJ.2 dkJ.2 

36 li 0 eE ft2 

= Vt(eE)2ex { _nm2s3 }. 

36rtli2s p eEii 
(33) 

Since the four-dimensional volume Vt remains in
variant under a Lorentz transformation, i.e., 
Vt = V't', the number of transitions per cm2 and 
per second is the same in the moving and station
ary systems of coordinates and is equal to 

. e2(E'2- H'2) { nm2s3 } 
J = · exp - ~-~---c--cc--c--

36rtli2s eli (E'2- H'2) 'I, 
(34) 

where E' and H' are defined in (7) and (8). For
mula (34) with H = 0 coincides with the expression 
obtained by Keldysh (apart from a numerical fac
tor), and coincides in the isotropic case with H = 0 
with the equation given in [ ll, 12 J. 

We note that Kane [ 12 J used in place of the exact
two-band expression, which he derived in 15 , a 
partially diagonalized equation, which in our nota
tion takes the form 

A a 
::Jt = ms2az + slikax + ieE ·ak , (2a) 

where k = (k~ + k} + k~) 1 /2 • No account was taken 
here of the fact that on going from (2) to (2a) the 
form of the operator x should change. In the exact 
calculation, the Hamiltonian (2a) yields for the in
terband matrix element X3 a value which differs 
by a factor kx/k from that given in [ 12 ]. In [ 12 ] 

this factor has been omitted and thus the correct 
result was obtained. Although at first glance the 
factor kx/k is of little importance, it does lead to 
a sharp difference in the value of the integral. The 
point is that kx/k has a branch point at x = ± iy. 
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Therefore the contour should now encircle this 
point as shown dashed in Fig. 1. It turns out here 
that the main contribution to the integral is made 
by regions on both edges of the cut near the point 
iy. As a result, the expression for the transition 
probability differs noticeably from (31), leading to 
a principally different dependence of the current 
on the field. Thus, in the presence of the factor 
kx/k, the number of transitions j would be deter
mined not by (34) but by the formula j == (4fi/37T 2) 

x (eE) 5/mE~. It is possible that in the case of 
more complicated structures and degenerate bands 
the matrix element X3 will actually have singular 
points lying below the saddle point x0 == i. 
. When H' /E' «(SenE' /m2s3) 1/ 4, the ratio of 

J(H) to the current j 0 in the absence of a magnetic 
field is determined by the formula 

I (H) = ex {- ;r,m2s3H'2'\ 
j 0 P 2enE'3 f 

{ 
1t eg''' 'i.;H;2m; l 

= exp - 8y'2 eftc2m3 ('i.;E!-/m;)'" f (35) 

We have substituted in (35) the explicit expres
sions for E' and H' from (7) and (8). We note that 
although the initial premises of Haering and 
Adams, as shown above, are debatable, the final 
formula (5.10) for the ratio j(H)/j0, given in [ 71 for 
m1 == m 2, differs from the formula obtainedf rom 
(35) for the isotropic case (mx == my == mz) and 
which is valid only for J(H)/Jo > 1/e, only in a nu
merical factor in the exponential: in [ 11 this fac
tor is equal to 4,1 5 == 0.266 in place of 1r ;s/2 
== 0.277 in (35). 

3. CURRENT IN TUNNEL DIODE. 
COMPARISON WITH EXPERIMENT 

To calculate the current in the tunnel diode, 
where account is taken of the final filling of both 
bands, it is necessary to know the current pro
duced by the electrons with momenta and energies 
in the intervals dky, dkz, and dE with both spin 
orientations. According to (31), this current is 
equal to 

dl = ___!!!____ e-na;2 de dky dkz, 
36nn 

(36) 

Here the area is q == LyLz and qt == q't', i.e., this 
quantity is likewise invariant to Lorentz transfor
mations. As is well known, [ 16 • 171 in the quasi
classical approximation the current through a unit 
area is equal to 

2 1 
dl = --Dvx dkx dky dkz = --Dde dky dkz. (37) 

(2n) 3 4n3n 

Comparing (32) and (31) we see that the quasi
classical coefficient of transparency D in a mag
netic field is equal to 

(38) 

When H == 0 and E' = E, this expression also 
coincides with that given in [ 11 ' 161 • Consequently, 
the current through the p-n junction in a trans
verse magnetic field is described by formulas 
that differ from those given in [ 11 • 161 only in that 
E is replaced by (E'2 - H'2)1/2. 

We emphasize that the current through the p-n 
junction in a magnetic field must be calculated just 
in a moving system of coordinates, where the 
average electron velocity in the absence of current 
through the junction is equal to zero, and conse
quently the distribution of the electrons in both 
bands is described by equilibrium Fermi func
tions. Here, of course, the total current along the 
p-n junction is zero (with the exception of the usual 
Hall current which is proportional to the current 
through the p-n junction). In the case of com
pletely filled bands the current along the p-n junc
tion, produced by electrons that are at the edges of 
the band and described by Eqs. (2), are compen
sated by other electrons ot the band. In the p-n 
junction, where there are free electrons and holes, 
the field current along the field E is balanced by 
the diffusion current resulting from the presence 
of a carrier density gradient-V'n. 

In exactly the same way, the "field" current 
connected with the motion of the electrons in a 
direction perpendicular to E and H, should be 
compensated by a diffusion current perpendicular 
to Y'n and H. Indeed, in the opposite case this 
current, which flows in a narrow region of the p-n 
junction, will be short-circuited by the body of the 
diode and this would lead to continuous energy dis
sipation. 

As is well known, [ 16 • 171 the current in a tunnel 
diode is determined principally by the dependence 
of the transparency coefficient of the dielectric 
field. Therefore, in accordance with (38), the cur
rent should decrease with increasing H, as was 
indeed observed in [ 1- 41 . It is easy to show that, 
accurate to a pre-exponential factor, the relative 
change of the current at constant bias and its de
pendence on the direction of E and of H relative 
to the principal axes of the ellipsoids are deter
mined by an expression similar to (34). The main 
contribution to the current is made by those ellip
soids for which the reduced field E' is maximal. 

Figures 2a-2c show the dependence of the tun
nel current J(8) on the direction of the magnetic 
field, given in [ 31 for different orientations of the 



TUNNEL CURRENT IN A TRANSVERSE MAGNETIC FIELD 

a 

D IJ5.D go• /95' 180.6-

b [0111 

[/!OJ 
.+ .• . . . 

a ill .. fii!J . 
[}iZJ [lit; 

azs o· go• ao• go• tzo· /.fO" /8/JD J/00 !900 270°,. 

J{ft)/Ji c 
i 

5 

" 

FIG. 2. Tunnel current vs. orientation of the magnetic field 
for PbTe diodes with different orientations of the p-n junc
tion. The lines show the theoretical curves, the points the ex
perimental data -from [']. The values of H are taken in accord 
with ['], and E was determined from the ratio of the maximum 
and minimum currents: a-p-n junction in (100) plane 
E = 114 kV /em, H = 60 kOe; b-plane (111), E = 48 kV /em, 
H = 53.2 kOe; c-plane (110), E = 45.7 kV /em (curve 1) and 
E = 48.5 kV /em (curve II), H = 53.2 kOe. 

p-n junction relative to the crystallographic axes 
for PbTe diodes. The same figure shows plots of 
the corresponding theoretical relations, as given 
by Eq. (34). In agreement with [iSl, we have put 
here Eg = 0.19 eV, m1 = 0.027 m0, and k = m11/m1 
= 11. The electric fields in the p-n junctions, indi
cated in the figures, were determined in such a 
way that the ratio of the maximum current to the 
minimum current coincided with the experimental 
value. The electric fields obtained in this manner 

J(.,.} 

3 

2 

t 

FIG. 3. Theoretical plot of the tunnel current in a PbTe 
diode with p-n junction in the (100) plane at E = 50.5 kV /em 
and H = 60 kOe. 

are in satisfactory agreement with those given 
in [ 31 • We see that the theory is in good agreement 
with the experimental data. A certain discrepancy 
in Fig. 2b is connected with the inexact orientation 
of the field relative to the crystallographic axis. 
As regards the curve on Fig. 2c, the large value 
of the current and even the presence of an addi
tional maximum at J. = 90 o cannot be attributed to 
the contribution of [11l] and [111] of the ellip
soids. Although their current should have a maxi
mum at J. = 90 °, its magnitude should be consider
ably smaller than that observed, because of the 
smallness of the effective electric field E'. It is 
possible that this effect is connected with the non
parallelism of the p-n junction. 

Figure 3 shows the theoretical angular depend
ence of J(J.) for a diode in which the junction lies 
in the (100) plane, but the electric field is approxi
mately half as large as for Fig. 2a. In this case 
there are regions of angles for which E' < H' and 
there is no tunnel current at all. As follows from 
the data of [31 , the ratio Jmax/Jmin increases 
sharply with increasing H at corresponding orien
tations of H. By way of an example, Fig. 4 shows 
a plot of J(H)/J(O) against H for E constant and 
directed along [111], and for H directed along 

J(H}jJ(O} 

1.0 

0,9 

0,8 

0,7 

0,6 FIG. 4. Ratio of maximum and 
minimum currents J(H)/J(O) against 
magnetic field for a PbTe diode 
with p-n junction in the (111) plane 
at E = 48 kV /em. The lines show O,J 
the theoretical curves, and the 
points the experimental data 
from [']. The directions of H are 
indicated in the figure. 

0,2 

0,1 

0 
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[l01] and [i~ll] respectively. We see that this 
plot agrees well with experiment. These calcula
tions show that measurement of the changes of the 
tunnel current in a magnetic field can serve as a 
reliable method for measuring the characteristics 
of a substance and also, apparently, as a most ex
act method of determining the field in a p-n junc
tion. 

In concluding this section, let us discuss briefly 
the limits of applicability of the theory developed 
above. The electric field E, on the one hand, 
should be sufficiently weak to make the interband 
terms in (16) small enough to be treated as a per
turbation. Consequently, the condition a >> 1 
should be satisfied, or 

(39) 

On the other hand, the field E should be suffi
ciently large. Indeed, the uncertainty in the energy 
of the junction is t::.E = 11(1/Tn + 1/T ), where Tn 
and T P are the relaxation times of tCe electrons 
and the holes, i.e., of the particles produced past 
the junction. Putting in (26) E' = E", we neglect 
terms of the order of qt::.E/eE = mst::.E/tieE in the 
exponential. Consequently, the following inequality 
should be satisfied: 

e (1!:'2 - H'2) '" ~ ms(1 / 'tn + 1 / 'tp). (40) 

From (39) and (40) we obtain 

Eg = 2ms2~/i(1 /-r:n + 1 /-rp). (41) 

Condition (41) is much less stringent than the 
usual criteria for the applicability of the kinetic 
equation kT » ti/T or 1:.1. » ti IT respectively for 
the nondegenerate and degenerate semiconductors. 
Of course, even a relatively weak interaction with 
the oscillations or with the impurity can greatly 
influence the characteristics of tunnel diodes if 
this interaction changes the density of the states at 
distances larger than or of the order of kT from 
the Fermi surface. [ 191 

4. TUNNEL CURRENT IN QUANTIZING 
MAGNETIC FIELD 

From the theory developed above it follows that 
when E' > H', when the motion of the electron 
along the field E' becomes infinite, the transverse 
magnetic field does not cause quantization. This 
explains the failure of attempts to observe oscilla
tions in the tunnel current in a transverse magnetic 
field. Thus, the cause of the absence of oscillations 
is the absence of quantization, and not its smearing, 
as proposed in [2• 7• 81 . We note that in a longitudi
nal magnetic field, where the quantization actually 

takes place, such current oscillations, connected 
with oscillations of the chemical potentials, are 
clearly observed. In exactly the same way, the 
voltage Vmax• corresponding to the maximum of 
the tunnel current and equal approximately to (J.LN 
+ J.Lp)/2, where J.LN and J.Lp is the Fermi energy 
measured from the edges of the bands in the n 
and p regions, should not change appreciably in a 
transverse magnetic field, whereas in a longitudi
nal magnetic field V max should increase by ap
proximately ti(wn + wp) /2 times, where wn and 
wp are the cyclotron frequencies of the electrons 
and the holes. Such a difference was actually ob
served in [1]. 

It follows from (31), (34), and (38) that the tun
nel current vanishes when H' = E'. The analysis 
given above shows that when H' > E' there will be 
no tunnel current, since in this case E = 0 in the 
moving system of coordinates, and a magnetic field 
alone cannot lead to transitions between the bands. 
This property is not a feature of the chosen model. 
Indeed, in the case of an arbitrary band structure, 
the electron motion in semiconductors in crossed 
fields and in a sufficiently weak electric field re
mains finite and the Landau quantization is con
served. If E is directed along the x axis and H 
along the z axis, then the electrons drift in this 
case in the y direction with constant velocity Vy 
= cEx/Hz/ 201 and consequently 8E/8ky = tivy 
= const, i.e., E = E0(Ex, kz, n) + likyvy. 

Since energy is conserved in the tunnel transi
tions, the difference E02 - Eot should be offset by 
the difference ti(ky2 - ky1)v Y• i.e., by the energy 
eE(Xo2 - Xot) acquired by the electrons as a result 
of the displacement of the position x0 of the cen
ter of gravity of the oscillator on going from band 
to band. Here, as above, the index 1 denotes the 
valence band and 2 the conduction band. When 
E = 0 we have 

(e02- Eo!) min= Eg + 1/2/i(•Uln + Wp). 

With increasing field E, the minimum energy 
difference (E02 - E01)min at fixed ky decreases 
(and the energy difference at fixed x0 increases). 
However, so long as (E02 .:... E01)min remains con
stant, the transitions can occur only if the wave 
vector changes, i.e., they will be proportional to 
the corresponding component V q = J V (r) exp (iq 
. r) dr of the perturbation potential V(r). Since 
V q = 0, when V = eEx, such transitions are possi
ble in a homogeneous field only as a result of scat
tering by impurities or phonons. Therefore the 
tunnel current in a strong magnetic field should 
decrease rapidly. In a moving coordinate system 
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where E = 0 when H' > E', the transitions between 
the bands will be caused in this case by the motion 
of the scatterers 'in the opposite direction, i.e., 
with velocity v = -s/{3. This case will be consid
ered in a separate paper. We emphasize that we 
are dealing here with transitions between bands 
for which the extrema are situated in one point of 
k-space and where the transitions are direct in 
strong electric fields. 

In conclusion the authors thank A. A. Ansel'm, 
A. I. Ansel'm, G. L. Bir, V. L. Gurevich, L. V. 
Keldysh, and B. D. Lalkhtman for useful advice 
during the discussion and E. B. Sonin for the elec
tronic computer calculations. 

APPENDIX A 

TWO-BAND EQUATION FOR TYPE PbS-PbTe 
CRYSTALS WITH ALLOWANCE FOR 
RELATIVISTIC EFFECTS 

. t 1 . t. t. [ 18 ] h Recent expenmen a mves 1ga wns ave 
shown that in PbS, PbSe, and PbTe crystals the 
extrema of both bands are situated at the point L, 
i.e., on the [ 111} axes on the edge of the Brillouin 
zone. In this case, as shown in [ 211 , there are no 
representations for which the matrix elements of 
all three components of the momentum Pi in the 
nonrelativistic approximation would not vanish 
simultaneously. However, theoretical calculations 
of the bands[ 221 have shown that in these crystals 
the spin-orbit splitting, i.e., the distance between 
the terms L5 = L4 + L 5 and L6, formed from La, 
can exceed the crystal splitting between levels of 
X, Y, and Z type, i.e., the distance between the 
representations L2 (or L1) and L3, due to the 
splitting of the term r 15 (or r 25). Therefore, as 
noted in [ 221 , the wave functions of the represen
tations L4 + L5 and L6 contain x, y, and z com
ponents, and the relativistic terms are in fact not 
small. 

The double-valued representations L and L* 
are complex and are equivalent, and ko is equiva
lent to - ko· Therefore in accord with Sec. 3 
of [ 231 if the nearest bands correspond to the rep-, ' 
resentations A and B, then 2/t should contain 
functions that are even with respect to the time
reversal operation and transform in accordance 
with representations contained in the antisymmet
rical product 

{(A + B)2} = {A2} + {B2} + AB, (A.1) 

and odd functions that transform in accordance 

with representations contained in the symmetrical 
product 

((A+ B)2] = (A2] + (B2] + AB. (A.2) 

For the single-valued representations A and B, 
the even functions should, to the contrary, be con
tained in the symmetrical product and the odd ones 
in the antisymmetrical. Consequently, in both 
cases the operator should contain even and odd 
interband terms transforming in accordance with 
the representations contained in AB. Since the 
group L includes the inversion operation, the in
terband terms can contain components Pi if one 
of the representations AB is even and the other 
odd. The components Pz transform in accord with 
Lz, and Px and Py transform in accord with L3; 
recognizing that 

L6+L6- = L1- + ~-+ L3-, £5+£5- = L5±La~ = 2L3-· (A.3) 

we see that the two-band Hamiltonian can contain 
all three components Pi only for the representa
tions L; and L6, whereas in the remaining cases, 
regardless of the arrangement of the other bands, 
it contains only P,x and Py. 

The operator 2/t can be readily constructed in 
accordance with the rules indicated in Sec. 2 of 
[ 231 , if account is taken of the fact that the repre
sentation Lt can be obtained from Lf. In accord 
with (A.1) and (A. 2), the inter band parts of the 
Hamiltonian can include even and odd functions of 
P, (], and H, which transform in accordance with 
the representations Li', i.e., rJ zPz and (rJxPx 
+ ayPy). and the intraband parts have only even 
terms that transform in accord with Lt , i.e., 
a zHz and (ax Hx + ay Hy). The matrices that 
transform in accordance with these representa
tions can be chosen respectively in the form p 1, 

p2, I, and p 3. Then the Hamiltonian :fe in accord
ance with the rules indicated in Sec. 4, Item 4 of 
[ 231 , can be written in the form 

1 " If ')] A H (A 4) + 2 LJ[(!1/'+f.t/)+P3(Jl; -Jli cr; i• · 

i 

We have used here the notation corresponding to 
(2). Here mx =my= m1, mz = mil• and m 
= (m 11 ml) 112, just as for the magnetic components 

I 1 II II 
in the two bands we have f.J-x = f.J-y and J.l-x = f.l-y· 

It can be shown that for the representations Lt 
'f and L6 
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+; ~ [ ( ~-t/' + ~-t/) + Pa ( ~-t/'- ~-t/)] a;H;. 
i 

(A.5) 

In accord with (A.3), kx and ky enter in fJe twice 
with two independent constants a and {3. We note 
that the matrices Pi in (A.4) and (A. 5) are not 
4 x 4 but 2 x 2 matrices, i.e., Pauli matrices, and 
u 'is the spin operator. If we now choose the basis 
functions in the form of a product of the coordinate 
and spin functions, then in the corresponding rep
resentation we obtain the 4 x 4 matrices Pi and 
PiOk• which coincide with the matrices in Eq. (2). 

We now change over in Eq. (A.4) to the new 
variables 

, m· )''• x;' = x; ( ,: , ( m )''' P/ = P; ---:- , ,m, 

ance in the expression for the current of an addi
tional factor of the order of 

( q ehH' ) ( H' ) ch -E,-.- ~cosh -,- . 
, e ms/ E 1 

When H' « E, this factor is generally insignifi
cant, and when H' is comparable with E' allow
ance for this factor in accord with (34) makes a 
contribution which is 7rm2s 3/enE' times smaller 
than the term quadratic in H' in (34) or (35). We 
note also that allowance for the influence of the 
near-lying bands, the distances to which in PbSe 
and PbS are comparable with the width of the for
bidden band, can lead to the appearance of addi
tional factors of the same order as the additional 
spin splitting. 

APPENDIX B 

( m )''' E/ = E; m; . (A.6) INFLUENCE OF DEFORMATIONS ON THE 
TUNNEL CURRENT IN A MAGNETIC FIELD 

We also introduce the notation Ai 
= (s/c)Ai (m/mi)1/ 2 , and then* 

s ( m 2 )'" s ( mx )''' Hx' = rotx•A' = -rotxA --- = -Hx - , 
c mymz c m 1 

i.e., 

s ( m; )''• H/ = c- H; -;;;: . (A.7) 

Since the Jacobian of the transformation (A.6) is 
B(x', y', z') /B(x, y, z) = 1, the volume in the old 
and in the new coordinate systems remains the 
same. Here (E' • H') = (s/c)(E ·H), i.e., the vec
tors E' and H' remain orthogonal. In the new co
ordinates (A.4) differs from (2) only in the pres
ence of additional terms ai 11i Hi. If the additional 
spin magnetic moment described by these terms 
were to vanish, then the corresponding g-factors 
would be connected with mi by the relations 
gil= 2(mo/m1) and gl = 2(mij/mllm1)112 , where mo 
is the mass of the free electron, and the spin split
ting would equal the cyclotron splitting, as is the 
case for free electrons. 

According to [ 181 , the spin splitting amounts in 
fact for PbSe to 0. 5 and for PbS to 0. 7 of the cyclo
tron splitting, whereas for PbTe the two are ap
parently equal. 

It is easy to see that the additional magnetic 
moment described by the second term in (A. 4) 
leads to an additional difference in the transition 
energies, of the order of ± enH/mc = ± enH' /ms, 
which in accord with (26)-(27) leads to the appear-

*rot x = curlx. 

As is well known, the tunnel current is notice
ably altered by deformation. r 241 The main cause 
of the change in current is the change in the width 
of the forbidden band and the corresponding changes 
in the effective mass. 

To take into account the influence of the defor-
mation in the operator in (A.4) it is necessary 
to include terms that transform in accord with the 
representation Li, i.e., Ezz and Exx + Eyy: 

§ce= :[~(Cii"-C;/)e;;+pa(C;/'+C;/)e;;]. B.1) 
i 

Here Cii and Ci'i are the constants of the defor
mation potential of the valence band and of the con
duction band. In this case Cxx = Cyy· From this 
we see that the deformation leads only to renor
malization of the reduced mass, i.e., to a change 
in m by an amount 

t+.m = - 1-L; (C;;" + C;/)e;;. 
2s2 . 

' 
(B.2) 

The ratio (mi/m) is not altered thereby. Accord
ingly, in agreement with (34) and (35), for suffi
ciently small deformations, we have 

• :rtms "' (B 3) 
M/l= --~fi(E'2 -H,2) LJ (C;;''+Cii')e;;, . 

and when H' « E' 

!+. ( j (ljl ) = - :rtmsH'2 ~ (C;/' + Cii') eii. (B.4) 
/ 0 2ehE'3 ; 
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Note added in proof (7 June 1966). We have recently learned 
of a paper [25] whose author also concluded the existence in 
crossed fields of two regions of solutions of the Schrodinger 
equation for the Bloch electron, depending on the ratio of the 
electric and magnetic fields, viz, a region with continuous en
ergy spectrum and a region with discrete spectrum correspond
ing to Landau quantization. 
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