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A complete set of hydrodynamic equations is derived phenomenologically on the basis of the 
conservation laws for a liquid possessing an intrinsic angular momentum. The total angular 
momentum per unit volume of such a medium consists of the ordinary angular momentum due 
to the hydrodynamic (translational) motion of the particles of the liquid and of its characteris­
tic (intrinsic) rotation M. In comparison with the ordinary hydrodynamic equations, the set de­
duced here contains two additional kinetic coefficients (diffusion of the intrinsic angular mo­
mentum and rotational viscosity coefficients) and an equation for the rate of change of M. It 
follows from the latter equation that the variation of M is due to two causes: the absence of 
equilibrium connection between the intrinsic angular momentum and the vortex motion of the 
liquid (relaxation), and the inhomogeneity of M (diffusion). The stress tensor is nonsym­
metric. It is shown that the interaction between the apparent and latent rotations leads to a 
dispersion of the first viscosity. The quasistationary transfer of rotation to particles sus­
pended in the liquid is considered. The kinetic coefficients are found by neglecting the diffu­
sion of the particles. 

ORDINARILY, the hydrodynamic properties of a 
liquid are completely determined by two viscosity 
coefficients-the shear Y1 and the bulk 1;. A more 
general expression for the forces of internal fric­
tion (with additional viscosity coefficients) can be 
obtained if allowance is made for the fact that the 
liquid, moving with the hydrodynamic velocity v 
the "visible" or "apparent" motion) possesses in 
addition a certain characteristic ("hidden" or 
"latent") rotation. Then the total angular ,momen­
tum per unit volume of the liquid consists of the 
ordinary angular momentum L = pr x v, associ­
ated with the apparent motion of the liquid, and of 
an intrinsic angular momentum M. 

The problem of the motion of a liquid with la­
tent angular momentum was first formulated and 
considered by Sorokin. [ u He found that, even with­
out shear or bulk deformation, an internal friction 
arises in such a medium, due to rotation of the liq­
uid. In fact, if the rotational state is suddenly 
changed, then the equilibrium distribution of the 
momentum between the apparent and latent mo­
tions is disrupted. This means that irreversible 
relaxational processes, associated with additional 
energy dissipation, are commenced. In these proc­
esses, the apparent rotation will frequently go over 
into the latent form or, conversely, the vortex mo­
tion of a liquid will be created at the expense of 
the intrinsic angular momentum. 

In the present research, the complete set of 
hydrodynamic equations is derived for a liquid 
with internal rotation. Our derivation, which is 
based on the use of the conservation laws only, is 
more general than in [ 1 J • 

As an example of a system to which the result­
ant equations are applicable, we choose a suspen­
sion, in which the liquid exchanges rotation with 
the solid particles suspended in it, or a two-phase 
medium vapor-liquid: the bubbles of vapor can 
rotate relative to the liquid. In addition, our equa­
tions can also have meaning for a "pure" liquid, 
the molecules of which possess an intrinsic angu­
lar momentum (the "hydrodynamics of molecules 
with spin," according to the terminology of Fren­
kel'[ 2 J ). 

1. The hydrodynamic equations of a liquid with 
intrinsic rotation can be obtained phenomenologi­
cally by means of the conservation laws-in the 
spirit of the hydrodynamic theory of superfluid­
ity. [ 3] 

By defining the density of mass flow in the usual 
way as the momentum of a unit volume of the liq­
uid, we write down the equations for the conserva­
tion of mass, energy, and linear and angular mo­
mentum: 

173 

ap I at+ div(pv) = 0, 

aE 1 at + divQ = o, 
(1) 

(2) 
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a ani/, 
iii (pv;) + axh. = o, (3) 

!_ (L;h + M;h.) + aGihl = 0. 
at axl 

(4} 

Here Lik and Mik are antisymmetric tensors 
which are dual to the pseudovectors of the density 
of the apparent Lz = 1/ 2 eikl Lik and latent Mz 
= 1/ 2 eikl Mik momenta, E is the total energy per 
unit volume of the liquid, and Q, IIik and Gikl 
are the flux densities of energy, momentum, and 
angular momentum to be determined. 

The complete set of hydrodynamic equations 
also contain an equation for the rate of change of 
the intrinsic angular momentum 

aM;h. a --+- (vzM;h) =/;h. 
at axl 

and the equation for entropy growth 

as I at+ div(vS) = R IT, 

(5} 

(6} 

where R is the dissipation function, and fik is 
some antisymmetric tensor which, by means of the 
laws of conservation, can be expressed in terms of 
other quantities, up to now unknown. For this pur­
pose, we introduce the stress tensor aik by the 
equation 

and, on the basis of (1) and (2), we write down the 
equation of motion of the liquid in the form 

( av; + av;) aa;h. 
p- Vh.- =--. 

at axh. axh. 
(7) 

It follows from the definition of the tensor Lik 
= [r x pv]ik = p(x ivk- xkvi) and Eq. (7) that 

d L; h. a aah.l a ail __ + --(v1L;h.) = x; -a-- xh -a 
at axl Xz Xz 

a 
= --(x;crh.z- xh.ail) + cr;h.- CJh.t­

axz 

From Eqs. (5} and (8}, we obtain 
a 

-(L;h. + Mo,) =/;h.+ CJih- r1h.i 
at 

a 
- --· (v1(L;h. + M;h.)- X;C1h.l + xkau]. 

axl 
By comparing the last equation with Eq. (4}, 

which expresses the law of conservation of the 
total angular momentum, we find 

/;h. = C1h.i- CJ;h.- ag;kd axl 

and Eq. (5) takes the form 1 > 

(8) 

1 >For M = 0, the symmetry of the stress tensor follows from 
Eq. (9) (see [4 ]). However, this property does not hold if the 
liquid has an intrinsic angular momentum. 

aM;h. a agil<~ - +- (vzM;h.) = CJh.i- C1ih.- -f) (9} 
at axl Xz 

The flux-density tensor of the intrinsic angular 
momentum gikl is connected with the tensor Gikl• 
introduced above, by the relation 

gih.l = G;h.l- Vz (L;h. + M;h.) + XiCJh.l- Xh.CJil· 

Equations (2) -(9} acquire meaning only after 
the forms of the unknown terms Q, a ik• gikl, and 
R are made clear. 

2. We introduce a frame of reference (K') in 
which the velocity of a given element of the liquid 
is equal to zero. This system is rotated relative to 
the original frame (K) with an angular velocity 
Q = 1/ 2 curl v. We designate by E and E' the en­
ergy per unit volume of the liquid in the frames of 
reference mentioned. These quantities are con­
nected by the well known relation [ 51 

E = E' + (L + M) U. (10} 

For what follows, it is convenient to write E in 
still another way. For this purpose, we introduce 
into consideration in the system K', along with the 
total energy density E', the internal energy of the 
liquid E, including the energy of latent rotation. 
Then the internal energy in the system K will be 
E + M • Q and, by defining E as the sum of the in­
ternal and kinetic energy of the liquid, we get 

E = 1l2pv2 + MU +E. (11) 

For M = 0, this expression transforms intothe 
usual 

E = 1l2pv2 + E00 (S, p). (12} 

In the thermodynamics of a liquid with intrinsic 
rotation, the latent angular momentum M must be 
regarded as an independent thermodynamic varia­
ble, the value of which (as a function of D) is de­
termined by the condition for equilibriumY 

As is well known, [5 1 the total angular momentum 
is connected with the energy E' by the relation 

L + M = -aE' 1 au. 
The derivative is taken here for fixed values of the 
intrinsic parameter M, the entropy and the density 
of the liquid. Integrating, we get 

E' = E0(M}- MQ- ~ LdU. (13) 

By computing the derivative 8E/8M from (10) 
and (11), and equating them, we get the equation 
8E/8M = 8E'/8M which, after substitution in it of 
E' from (13}, takes the form 

2 >The situation is similar in a ferromagnet: there, the mag­
netization M and magnetic field H correspond to our M and 0. 
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oE = 8Eo(M) _ Q. 

aM aM 

The latter equation can be integrated. Taking 
(11) and (12) into account, and eliminating E00 in 
E0 (M), we get 

E = Eo(M)- MQ. (14) 

The expansion of the scalar function E0 (M) in 
powers of the pseudovector M obviously contains 
only terms of even powers. With accuracy up to 
M2, we have 

E = Eoo + 1/zaM2 - MQ. (15) 

The equilibr!_um value of M is determined from 
the condition 8E/8M = 0: 

M-Ula. (16) 

Thus, for 0 = 0, the minimum energy E should 
correspond to M = 0. It then follows that a > 0. 

The following thermodynamic identity holds for 
the internal energy: 

dE= pTds + wdp +(aM- Q)dM- MdQ. (17) 

Here T is the absolute temperature, s = S/p and 
w are the entropy and the heat function per unit 
mass, respectively. From the ident_!ty (17) and the 
definition of the heat function w = (E + p)/ p, we 
get the following expression for the differential of 
the pressure p: 

dp = -pTds + .pdw- (aM- Q)dM + MdQ, (18) 

which in a liquid entirely at rest (M = 0 = 0) goes 
over into the ordinary thermodynamic relation 
dw = T ds + dp/p. 

3. To determine the unknown terms in the 
hydrodynamic equations, we differentiate Eq. (11) 
with respect to time. By using (17) and substituting 
the time derivatives of p and v from Eqs. (1) and 
(7), we get 

(19) 

where u ik = u ik- po ik· The second term in the 
right side of (19) can be rewritten with the help of 
the identity (18) in the form 

-vVp = pTvVs-.pvVw-vV(MQ) + aM'(vV)M 

= pTvVs- pvVw- div{v(MQ)] 

f) ' OV; + aM;-(v~tM;)-(aM2 - MQ)f>;~t--· 
OXk OXk 

Substituting this in Eq. (19) and separating terms 

of the form div, we find 

aE ( v2 ) - =- div{pv - + w - (vcr') + v(MQ)] 
f)t 2 

+pT(~+vVs) +aM;[oM; +!__ (v"M;)] 
f)t f)t ox" 

{ ' M M l OV; -a;"+ (a -0)6;"--. 
OXk 

(20) 

According to Eqs. (1) and (6), the second term 
on the right side is equal to R, and the third term 
can be transformed by means of Eq. (9): 

[ aM; a J a [aM;" a J 
aM; --at+ ax" (v"M;) =z-Mu, ----at+ ax1 (vlMi~<) 

Then Eq. (20) takes the form 

aE + div [ pv( vz + w) + avM2- (vA.) - (Mg) l 
at \ 2 ~ 

= Aik ( OV; + aM;h)- g;" aM; - R, 
ox" ox" 

where the new tensor 

is introduced in place of u fk and the following 
notation is used: 

(21) 

(22) 

Equating (21) with the equation of energy con­
servation (2), we find 

Q = pv(v2 I 2 + w) + avM2- (vA.)- (Mg), 

R =A.;" ( av; +aM;")- g;" aM; 
ax" oxh 

=A;h [ 1/z ( ::: + ::~ )+(aM;h-Qih) J 
oM; 

-g;"-a , 
Xk 

where 

(23) 

(24) 

By virtue of the law for entropy growth, the 
dissipation function R must be positive. The most 
general form of the tensors A.ik and gik follows 
from this requirement. Limiting ourselves to 
terms linear in the gradient, we obtain 

( av; av" 2 avl ) 
'-u=T) -+---6;"--

axh OX; 3 oxl 
OVl + \;6;~t -a-+ 1/z 'Y (aM;"- Q;~t), (25) 
Xl 

g;h = -JA.OM; I f)xh, (gikl = -JA.OM;h I axl). (26) 
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Thus there are altogether four independent 
kinetic coefficients: 7}-the coefficient of first vis­
cosity, t-the second, y-the third (rotational), 
and JL-the diffusion coefficient of the intrinsic an­
gular momentum. In the stress tensor 

( avi avh. 2 avl ) 
C1ih. = [p + M (0- aM)] 6i11. + TJ - +---6i11.-

ax~~. axi 3 axl 

avl '\' + ~6i11. ax1 + 2 ( aM;k - Q;k) (27) 

the contribution made by the intrinsic rotation con­
sists of two parts: the renormalization of the pres­
sure M ·(0- aM) and a dissipative term propor­
tional to y. The latter is an antisymmetric tensor, 
so that as a whole the stress tensor is seen to be 
asymmetric (see note 1l ) • 

Finally, the hydrodynamic equations of a liquid 
with intrinsic rotation are written as follows: 

p [ ~: + (vV)v J =- V (p + MQ- aM2) + ( TJ + ! ) ~v 
+ ( ~ +~- {) V divv + ~'\' rotM, (28)* 

aMiat+ (vV)M=y(O-aM) +JLAM-Mdivv. (29) 

To them one must add the equation of continuity 
(1) and the equation for entropy increase (6). In 
the latter, the dissipation function is equal to 

TJ ( avi avk 2 avl )2 '\' R=- -+---6ik- +-(aMiii.-Qi11.) 2 
2 axk axi 3 ax( I 2 

( aM )2 
+ ~(divv) 2 + f.l. -a . . \ x, 

From the requirement that R be positive it 
follows that 

TJ, ~. y, f.l. ~ 0. 

(30) 

(31) 

The equations are somewhat simplified if the 
liquid can be regarded as incompressible: 

divv = 0, 

p[ ~+(vV)v ]=- V(p+MO-aM2) 

+ ( TJ + !) ~v+ ~'\' rotM, 

aM I at+ (vV)M = y(O- aM)+ JLAM. 

(32) 

(33) 

(34) 

As is seen from the latter equation, there are 
two reasons for the change in the intrinsic angular 
momentum: the absence of an equilibrium connec­
tion between M and 0 (relaxation) and the inhomo­
geneity of M (diffusion). 

4. As an example, we consider the motion of an 
incompressible liquid, brought about by small har-

*rot= curl. 

monic oscillations of a solid immersed in it. The 
set of equations (32)-(34) can be linearized in the 
given case: 

pv = - V p + ( TJ + 4 i )Llv + 2
1 rot M, 

.. a-r 1 -r 
(35) 

. 1( g) M = - 7 M-a + f.I.~M. (36) 

In place of y we have introduced here the new 
constant T = (ay) - 1 which has the dimensions of 
time. Equations (35) and (36) achieve a simple in­
terpretation if one can neglect the diffusion of the 
intrinsic angular momentum (JL = 0). Then, setting 
all the quantities proportional to exp (- iwt), where 
w is the frequency of oscillation of the solid, and 
eliminating M from the equations, we get 

( iw-r 1) -iwpv = - V p + TJ - . t\v. 
1- lW't 4a-r 

According to the ordinary scheme, the coeffi­
cient of !::J.v should be regarded as the first vis­
cosity. Thus the presence of a latent rotation is 
equivalent in the given case to replacing the ordi­
nary viscosity 7J by an effective viscosity 

iw-r 1 
TJ -TJ----- 1 - iw-r 4a-r · (37) 

In the limiting cases of low (w-r « 1) and high 
(w-r » 1) frequencies, this formula gives, respec­
tively, 1j = 7J and Tj = 7J + (4a-r )-1. For the inter­
mediate frequencies, Tj exhibits dispersion. This 
circumstance can be used for the experimental de­
termination of the rotational viscosity y = (a-r) - 1. 

5. In conclusion, we shall show how the coeffi­
cients a and T can be found for a liquid in which 
the carriers of the intrinsic angular momentum 
are minute solid particles suspended in it. We 
shall carry out the calculations for the case of low 
concentrations of spherical particles. 

As an auxiliary problem, we shall determine 
the friction torque acting on a sphere of radius a 
rotating uniformly with angular velocity w in an 
unbounded liquid with a given vortex velocity n at 
infinity. For low Reynolds numbers, we get the fol­
lowing expression for the velocity of the liquid in 
spherical coordinates (w and n are directed along 
the polar axis): 

v., =• v = r sin tl-[Q- (Q- {!))a3 I r'l]. 

The frictional force acting per unit area on the 
sphere is 

'I'J (av -~)1 =3TJ(Q-w)sintl-, 
iJr r r=a 

and the total torque of this force is 
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8nTJali(Q - ro). (38) 

We now proceed to the problem of the determi­
nation of the rotational viscosity of the suspension 
and consider the following nonstationary problem. 
The liquid rotates as a whole with constant angular 
velocity U. At a certain time, the sphere is placed 
at the origin of the coordinates. The friction 
torque exerted on it by the liquid leads to a change 
in the angular velocity w of rotation of the sphere 
from its zero value at the initial instant to a maxi­
mum value U (total drag of the sphere by the liq­
uid) after the lapse of a time of the order of T. If 

(v=TJIP), (39) 

then one can neglect the derivative 8v /8t ~ v /r in 
the equation of motion of the liquid in comparison 
with the viscous term vllv ~ (v/a2)v. We assume 
that the condition of quasistationarity (39) is satis­
fied. Then, for calculation of the time derivative of 
the rotational momentum m = 8j 15 1ra5p'w of the 
sphere (p' is its density), we can use Eq. (38): 

dmd = 8nT)a3(Q- ro) =- :15v ~ (m- 8n asp'Q )· 
t ~ p ffi . 

In view of the assumed low concentration n of 
the suspension, the intrinsic angular momentum M 
per unit volume of the liquid is equal to the product 
of the angular momentum of the individual sphere 
by n. Then 

dM 15v p ( Bn ) dt = -----;;;:-- 7 M- 15 asp'nQ . 

Comparing (40) and (36), we find the desired 
coefficients: 

a2 p' 
't'=-- --

15v p · 

(40) 

(41) 

As was to have been expected, a-1 is identical 
with the moment of inertia of the spheres contained 

in unit volume. From the relations (39) and (41), it 
is seen that the condition of quasistationarity is 
satisfied only for heavy particles (p' » p). 

It should be noted that the applicability of Eqs. 
( 41) is still limited by one condition. The fact is 
that we did not take the diffusion of the suspended 
particles into account in the calculations. This is 
legitimate only in the case in which the time Tn 
~ a2/D, during which the sphere is moved a dis­
tance a by Brownian motion, is much larger than 
T. Thus T is limited by (39) and above: 

(42) 

The conditions of the compatability of the in­
equalities (42) follow from the Einstein relations 
for the diffusion coefficient D ~ kT /TJ a and Eqs. 
(41); 

p'~p. (43) 
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