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Coupled electromagnetic, plasma and spin waves in antiferromagnetic semiconductors and 
metals are investigated. Since, in contrast to ferromagnets, there is not one but two spin 
waves in antiferromagnets, the spin and electromagnetic (plasma) wave interaction pattern in 
antiferromagnets turns out to be more complex than in ferromagnets. However, in antiferro
magnets the magnetic susceptibility is proportional to a small parameter Xo (the static sus
ceptibility), and the spin and electromagnetic oscillation coupling in antiferromagnets is there
fore weak. The frequency corrections due to wave coupling are of the order of IX'; in the region 
in which the frequencies of the noninteracting spin and electromagnetic (plasma) branches cross, 
and of the order of X 0 far from the intersection region. 

1. INTRODUCTION 

THE interaction between spin and plasma waves 
in ferromagnetic semiconductors was investigated 
in several papers. [ 1- 51 It was shown that the os
cillation spectra can be noticeably altered by the 
interaction, and in particular that oscillations with 
anomalous dispersion can appear. Similar effects 
can take place in antiferromagnetic semiconduc
tors and metals. 

Since, unlike ferromagnets, antiferromagnets 
can contain not one but two branches of spin 
waves, the dispersion law of which can depend 
strongly on the type of the magnetic anisotropy of 
the antiferromagnet and also on the magnitude and 
direction of the magnetic field, it is natural to ex
pect a more complicated picture of the wave-inter
action spectra in antiferromagnetic semiconduc
tors and metals. However, because the tensor of 
the high frequency magnetic susceptibility of anti
ferromagnets is proportional to the small parame
ter Xo (the static magnetic susceptibility), simple 
analytic expressions can be obtained for the fre
quencies of the interacting oscillations. The effec
tive parameter describing the interaction of the 
spin wave with electromagnetic and plasma waves 
in the region where the unperturbed branches 
cross is the quantity ~. while far from the re
gion of crossing of the branches the corrections to 
the frequencies are proportional to X0• 

We consider in the paper the spectra of inter
acting spin, electromagnetic, and plasma waves in 

antiferromagnetic semiconductors and metals with 
magnetic anisotropy of the ''easy axis" and "easy 
plane" type, in a wide interval of magnetic-field 
values. 

2. DISPERSION EQUATION 

In antiferromagnetic semiconductors and met
als, the electromagnetic oscillations are described 
by Maxwell's equations in which the dielectric ten
sor Eik and the magnetic susceptibility tensor Xik 
are ( ,, iez 

~J (8;k) = - ~82 81 

0 

( ,, ix,z 

D (X;k) = -~xz %1 (2.1) 
0 

(The Z axis is directed along the constant mag
netic field in the antiferromagnet.) 

Using (2.1), we obtain from Maxwell's equations 
a dispersion equation for the interacting waves 

An4 + Bn2 + C = 0, (2.2) 

where 

A = A eArn, Ae = 8 1 sin2 fr + 83 cos2 fr, 

Am = 1 + 4n [.(X,! cos2 cp + x,t' sin2 cp) sin2 fr + %3 cos2 fr], 

B =Be- 4n{ (812 - 822) [x,3 + ( 1 + 4nx,3) 

X (x,1 cos2 ffJ + x,/ sin2 <p)] sin2 fr + 28283X,2 ( 1 + 4nx,3) 
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x cos21't + 818a[ (XI+ x/) (1 + 4nx3 cos21't) + 2;.:3 cos21'J- where 

+ 4n (x1x/ - X22) sin21't]}, 

Be= - [ (812- 822) sin21't + 8183 (1 + cos21't)], 

C = Ce + 4nCe[xa + (1 + 4nxa) (XI+ X/) 

+ 4n ( 1 + 4nxa) (x1x/ - X22) ] , 

(2.3) 

where n = kc/w is the refractive index, and J. and 
cp are the polar and azimuthal angles in the wave
vector space, reckoned from the Z and X axes 
respectively. 

In a nonmagnetic medium (:X = 0, A = Ae, 
B = Be, C = Ce), Eq. (2.2) defines the natural fre
quencies w jP>(k) and the refractive indices of the 
electromagnetic and plasma waves, which can 
propagate in semiconductors and metals. The nat
ural frequencies wjP>(k) in the case of semicon
ductors coincide in the approximation considered 
here with the natural frequencies of the oscilla
tions of a "cold" plasma, which had been investi
gated in detail (see, for example, (BJ). We recall 
that the number of waves for the "cold" plasma is 
equal to five in the case when only one species of 
carrier is present. 

If we neglect the spatial dispersion of E and X, 
then we obtain from (2.2) the following expres
sions for the refractive indices of waves with 
frequency w: 

n2 = ( -B ± "j/B2 - 4AC) I 2A. (2.4) 

The dispersion equation (2.2) allows us also to 
determine the dependence of the natural frequen
cies w = wj (k) on the wave vector k. To this end 
it is necessary to know the explicit form of the di
electric-constant and magnetic-susceptibility ten
sors. 

In the case when the Larmor radius rL of the 
electrons with thermal velocity (for semiconduc
tors) of electrons with limiting Fermi velocity (for 
metals) is small compared with the wavelength 
(krL « 1), and the phase velocity of the wave along 
the magnetic field is large compared with the ther
mal velocity or the limiting Fermi velocity, the 
spatial dispersion of the dielectric tensor can be 
neglected. The components of the tensor E are 
then 

2 
~ Wpa 

83 = 1-LJ -
w2 ' 

a 

(2.5) 

2 

Wpa = (4ne,. noa I ma") 'h, WBa = I ea lEo I m,,.* c 

are the Langmuir frequency and the gyrofrequency, 
n0a is the equilibrium density of carriers with 
charge ea and effective mass m!v, and Ka 

= I eal/ea · 
We now present expressions for the magnetic

susceptibility tensor. We consider first uniaxial 
antiferromagnets with magnetic anisotropy of the 
"easy axis" type. 

If a constant sufficiently weak magnetic field is 
parallel to the anisotropy axis (Z axis), then the 
magnetic moments of the sublattices are antiparal
lel, one of the magnetic moments being oriented 
along the magnetic field and the anisotropy axis. 
The components of the magnetic-susceptibility ten
sor are in this caseD 

XJ= 0, (2.6) 

where 

QH = gH, HAE = (26 (~- ~')) 'I'Mo, Xo = 1/8, (2. 7) 

M0 is the magnetic moment of the sublattice; 
g = e/2mc is the gyromagnetic ratio; o, a and a' 
are the exchange constants; and {3 and {3' are the 
magnetic-anisotropy constants. In order of magni
tude {3 ~ {3' ~ 1, 6 ~ TN/figM0 (TN is the Neel tem
perature), and a~ a'~ TNa2/figM0, where a is 
the lattice constant. Formulas (2. 6) and (2. 7) are 
valid if H < HAE· 

If the magnetic field is directed along the aniso
tropy axis and HAE < H <HE, where HE = 26M0, 

then in the ground state the magnetic moments of 
the sublattices are oriented at an angle e to the 
anisotropy axis (cos e = H/(26- {3- {3')M0), and in 
the coordinate system where the magnetic moments 
lie in the zy plane the components of the magnetic
susceptibility tensor are 

/(! = xoQ12 I (Q12- W2)' x/ = xoQH2 I (Q12- w2)' 

l)These formulas can be obtained from the formulas of the 
paper by Kaganov and Tsukernik[7J, in which no account was 
taken of spatial dispersion, by making the substitution 

gH.tE-+ gH AEI[1 + 26(a- a') k 2 I (gH A E) 2]'/,, 
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where 

Q12 = (gMo)2·[2<'1 + (a + a') k2] [H cos 8 I Mo 

+~cos 28 + ,~' + (a+ a' cos 28)1£2], 

Q22 = (gM0)22<'1(a- a')k2 sin2 8. (2.9) 

Expressions (2. 8) and (2. 9) are valid if o sin2 e 
»(a- a' cos20)k2 • 

If the magnetic field H is perpendicular to the 
anisotropy axis (we choose the direction of the 
magnetic field along the Z axis, and the anisotropy 
axis is aligned with the X axis), then the compo
nents of the tensor X are 

Xt = xoQH2 I (Qt2- w2)' xt' = :x.oQt2 I (Qt2- W2)' 

(2.10) 

where 

(2.11) 

and e is the angle at which the magnetic moments 
of the sublattices are oriented to the magnetic 
field H, cos 0 = H/HE. 

We now present expressions for the components 
of the high-frequency magnetic-susceptibility ten
sor for uniaxial antiferromagnets with magnetic 
anisotropy of the "easy plane" type. 

If the constant magnetic field H is directed 
along the anisotropy axis (the Z axis) and the 
magnetic moments lie in the XZ plane, then the 
components of the tensor X are 

X2 = xowQn I (Qt2 - w2), xs = :xoQ22 /{Q22- w2), (2.12) 

where 

(2.13) 

Finally, if the magnetic field H lies in the basal 
plane, then 

Xt = xoQt2 I (Qt2- w2)' xt' = :x.oQH2 I (Qt2- w2)' 

where 

(2.15) 

We note that in deriving formulas (2.12)-(2.15) we 
disregarded in the Hamiltonian of the antiferromag
net the terms that can lead to weak ferromagnet
ism. 

We now consider electromagnetic waves in 
antiferromagnets with anisotropy of the "easy 
axis" type for small values of the wave vector k, 
when the spatial dispersion of the magnetic perme
ability can be neglected. Then Eq. (2.4) has two 
roots for n2 as functions of the frequency, or six 
branches for w = wj(k), if we are interested in the 
natural frequencies as functions of the wave vec
tor. 

Owing to the interaction of plasma waves with 
spin waves, anomalous dispersion can appear, i.e., 
in a definite interval of the values of the wave vec
tor some of the natural frequencies can decrease 
with increasing wave vector (see Figs. a and b). 

3. SPECTRA OSCILLATIONS 

1. Let us consider waves in antiferromagnets 
with anisotropy of the "easy axis" type in weak 
magnetic fields. Recognizing that the tensor of the 
magnetic susceptibility is proportional to a small 
parameter x0, the dispersion equation (2.2) can be 
represented in the form 

DJJm + 4nxo11Dt = 0, (3.1) 

where 

D1 = Ae sin2 ti-n~ + Btn2 + 2Ce, 

B1 = - (812- 822) sin2 'fr + 28283 cos2 tt~- 28t8s, 

'I'J = (Q2-w2-Qn2) fQ2, 

~ = -x2I:Xt = 2Qnw/ (Q2- W2- Qn2)· 

In the zeroth approximation, Eq. (3.1) deter
mines the frequencies of the uncoupled electromag
netic and plasma waves, w = wf>(k), and of the 
spin waves, w = wjm>(k) = Q1, 2 • Let us find the 
changes produced in these frequencies by the in
teraction between the waves. Assuming that 
w = wJP>(k)(1 + AjP>), we find from (3.1) that 

a<~>= -4n:xo'I'J6/Dm(w<n, (3.2) 

where 

(3.3) 

Similarly we obtain the changes of the frequencies 
of the magnetic oscillations 

(J) = w/"'l(k) (1 + ar>)", 
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As seen from these formulas, the changes of the 
f · <p> d <m> d · requenc1es wj an wj , ue to the wave mter-
action, are of the order of x0• 

It is easy to verify, by using expression (2.5) 
for the tensor E ik(w), that the quantity d\m> (even 
in the case of one species of carriers) cdn either 
increase or decrease with decreasing wave vec
tor k (in the latter case the oscillations can have 
anomalous dispersion). 

It follows from (3. 2) and (3. 4) that the coupling 
between the oscillations increases when one of the 
frequencies of the plasma oscillations w~p>_ g 1 2 

(the expressions for Dm and De in the ~enomin'a
tors of (3.2) and (3.4) tend to zero). Then, how
ever, the expressions (3.2) and (3.4) are no longer 
valid. 

Let us now consider the changes occurring in 
the frequencies near the region of intersection of 
the unperturbed plasma and magnetic branches 
(w1~P>- g1 2). Putting in this case w == w~Ph +d) 

! <p> J ana assummg that wj jg1, 2 - II « I, we find 
from the dispersion equation (3.I) that 

~ = 1lz{ 1 - o}~> l!:lt,z ± [ ( 1 - w <lj> I g1,2) 2 

+ 4:rtxo6Q I Qt.z] '1•}, (3. 5) 

where ~ is determined by formula (3.3). 
When (I- wJP>;g1, 2 )2 » x0, formulas (3.5) go 

over into the formulas (3.2) and (3.4), provided we 
neglect in the latter the terms of order 
II- wJPrg1, 2 1 compared with unity. It follows 
therefore that near the region where the plasma 
and magnetic branches crossed, when 
(I- wJP>;g1, 2) 2 .S x0, the changes in the frequen
cies are of the order of -IX;. 

In a high-density plasma (wp » WB) at angles J. 
not close to rr/2, propagation of low-frequency 
waves (w « wB) (helicons) is possible, with a dis
persion law 

(3.6) 

In this case, the quantity ~ in formulas (3.2) and 

I 

rr 
a h 

(3.5) is ~ == sin2 -.9-/2. Formula (3.5), which deter
mines in this case the frequencies of the interact
ing spin waves and helicons, has the simple form 

~ = 1lz{1- w fQt,z + [ (1- w I Qt,z) 2 

(3.6') 

We note that expressions (3.6) and (3.6'), de
rived for a "cold" plasma, are valid also in the 
presence of spatial dispersion, when the phase ve
locity of the helicons along the magnetic field 
w/k cos J. is of the same order as or smaller than 
the thermal velocity of the electrons (or the limit
ing Fermi velocity), under the condition that the 
wavelength is large compared with the Larmor 
radius of the electrons. 

2. We now proceed to consider the interaction 
of spin waves of plasma waves in antiferromag
nets in sufficiently strong magnetic fields HAE 
< H < HE, when the magnetic field is directed 
along the anisotropy axis. In the region of mag
netic fields not close to HAE• the frequency g 1 is 
close to gH, and therefore when w » g 2 we as
sume that Xt i'::! X1 and x3 i'::! 0. In this case the dis
persion equation (2.2) will take the form, accurate 
to terms ~ x0, 

(3.7) 

where t in the coefficient B1 or Dt is now 
t == w/g1. From this we find that the changes in 
the plasma frequencies are 

~<r;> = _;4:rtxo6Qt2 1 (Qt2 - (1)(})2 ), (3.8) 

where ~ is given by (3.3) with t == w/g1. The 
change in the spin-wave frequency w i'::! g 1 is equal 
to 

(3.9) 

In the region where the plasma and spin 
branches cross, w1~P> i'::! g 1, it is easy to find that 

- <P> w - w<j> (I +d), where 

~ = 1lz{1- w(f>IQt + [(1- wT 1Qt)2 + 8nxosJ"'}.(3.IO) 

In the frequency region w ~ g 2 « gb the compo
nents of the magnetic-susceptibility tensor are ap
proximately equal to 

Xt = xo, Xt' = xoQH2 I Q12, Xz = 0, 

In this case the dispersion equation takes the form 

(3.11) 
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where 

D2{w) =A. cos2 itn4 - [ {812- 822) sin2 it 

+ 28183 cos2 il']n2 +C.+ (1- w2 I fJ.22) {A.n4 (cos2 <p 

+ sin2 q>fJ.n2 I fJ.12) - [ ( E12 - E22) ( cos2 <p 

+ sin2 <pfJ.n2 I fJ.12) sin2 it + e1e3 ( 1 + 9.n2 I fJ.12)] n2 

+ c.(1 + gn2IQ12)}. (3.11') 

From this equation we find that 

where 

Ll <~> = -4n:x;o1;'Q22 I (Q22- w<~>2 ), 
Ll <:;> = 2:rt:x;oD2(Q2) I D.(Q2), 

1;' = D2(w) (wdD.((l))/dw)-1lm=(llT· 
In the region where the frequencies cross 

(3.12) 
(3.13) 

<p> ( • 
wj ~ Qz, we find that w = wjP>(1 +D.); where 

Ll = 1l2{1- w<~> I fJ.z + 1[ (1- w<~> I Q2)2 + 8n:x;o1;']''•}.(3.14) 

3. If the magnetic field is perpendicular to the 
anisotropy axis, then when w » Q2 it follows from 
(2.10) that x3 ~ 0; on the other hand, if w ..... Q2 
« Q2, then 

:X:1 = :x;oQn2 I fJ.12, :x;/ = :x;o, :x;z = 0, 

xa = :x;oQz2 sin2 e I (Qz2- w2). 

In this case, when w » Q2 the dispersion equation 
coincides with (3. 7), and when w « Q2 it coincides 
with (3.11), where it is necessary to put in these 
formulas 

D1 ( w) = A.n4 ( cos2 <pQ~ I Q12 + sin2 <p) sin2 it 

- n2 [ ( e12 - E22) ( cos2 <pQ~ I Qt2 + sin2 q>) sin2 it 

- 2e2ea cos2 itwQn I Q12 + Et8:i { 1 + Q~ I Qt2)] 

+ c.(1 + Qn2 IQ12), 

D2(ro) = sin2 e{A.ni cos2 '(}- n2( (e12- ez2) sin2 it 

+ 2Et8acos2 it] +C.} +(1- w2 1Qz2)D1 (w). 

( 3.15) 

(3.16) 

Therefore the corrections to the frequencies w~P>, 
Q1, and Q2 are determined in this case by for
mulas (3.8)-(3.10) with w :::i w~P> » Q2 and w ~ Qt 
» Q2 and by formulas (3.12)-{3.14) with w ~ w~P> 
« Q1 and w ~ Q2· 

4. We now proceed to study the interaction be
tween the plasma and spin waves in antiferromag
nets with anisotropy of the "easy plane" type. If 
the constant magnetic field is directed along the 
anisotropy axis, then for w » Q2 we find from 
(2.12) that X3 = 0 when w """' Q2 » Qt 

Xt = :x;oQ~ I Q12, :x;t' = :x;o, :x;z = 0, 

Therefore in this case the dispersion equation co
incides with (3.7) or (3.11), where D1(w) and D2(w) 
are determined by formulas (3.15) and (3.16) (it is 
merely necessary to replace QH in the expression 
for Dt(w) by -QH, and replace sin2 e in (3.16) by 
unity). 

5. If the magnetic field lies in the basal plane, 
then for w » Q2 we have x3 = 0 and the dispersion 
equation coincides with (3. 7), with 

Dt ( w) = Aen4 ( cos2 <p + sin2 q>Q~ I Q12) sin2 '(} 

-n2 [ (8t2 - ez2) (cos2 <p + sin2 <pQ~ I Qt2) sin2 it 

+ 2ezea cos2 itwQn I Qt2 + EtEa(1 + Qn2 I Qt2)] 

+C.(1 + Qn2 1Qt2). (3.17) 

When w """' Q2 « Q1 the dispersion equation takes 
the form (3.11), where D2(w) coincides with (3.11'). 

Thus, far from the point of crossing of the fre
quencies of the noninteracting electromagnetic 
(plasma) and spin waves, the changes in the fre
quencies, due to the coupling of the waves, are of 
the order of Xo in all the cases considered above; 
near the crossing point the coupling of the oscilla
tions was much stronger, and the changes in the 
frequencies are of the order of x~/2 • 

We note that the interaction between spin waves 
and electromagnetic or plasma waves turns out to 
be significant only when the damping of the waves 
is small, when r /w « x~/ 2 • where r is the coef
ficient of damping due to all possible dissipative 
processes. 

Antiferromagnetic semiconductors with rela
tively large mobility, in which interaction between 
spin waves and electromagnetic or plasma waves 
can probably be observed, were discovered re
cently. These include CuFeS2 <no"""' 1018 cm-3, mo
bility JJ. """' 30 cm2/V -sec) [B 1 and UTe2 (no< 1019 em, 
JJ. "'30 cm2/V -sec. [ 91 

In conclusion the authors thank A. I. Akhiezer 
and A. M. Prokhorov for interest in the work and 
a discussion. 
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