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Interaction processes between magnons and photons or phonons, in which virtual magnons are 
involved, are considered. A diagram technique involving magnon causal functions is used in 
the calculations. The characteristics of photon decay into a photon and a magnon are calcu­
lated. It is suggested that the process may be detected by irradiating ferrites with a laser 
light source. A quantum interpretation of the indirect phonon instability is given and a cal­
culation of the corresponding matrix elements for an arbitrary direction of motion and for 
all three phonon polarizations is presented. 

1. INTRODUCTION 

THE quantum theory of the interaction of magnons 
with magnons or photons with phonons, based on 
the quantization method of Holstein and Prima­
koff, [ 11 has been developed by a number of auth­
ors. [2- 101 Processes have been studied which are 
connected with the relaxation of magnons and with 
instabilities of a different type. The processes 
chiefly studied corresponded to the Feynman dia­
grams with a single vertex. In the present work, 
we consider effects of higher order involving vir­
tual magnons. Causal magnon functions are intro­
duced in Sec. 2. The interaction of magnons with 
photons is calculated in Sec. 2 with the help of 
these functions by second-order perturbation the­
ory. In the last section, the so-called indirect 
transverse instability is interpreted from the 
quantum viewpoint. [11l This instability is con­
nected with the formation of phonons, and a calcu­
lation is given of this effect for an arbitrary angle 
of propagation and for all types of phonon polariza­
tion. 

2. MAGNON CAUSAL FUNCTIONS 

According to Holstein and Primakoff, [ 11 the 
magnon function can be represented in the follow­
ing way: 

a(x) = V-'1• ~, (ukcke-i(kx) + vk *ck+ei(kxl), (2.1) 
'k. 

where ck and ck. are the annihilation and creation 
operators of magnons, V is the volume of space, 
x is the four-dimensional coordinate, (kx) the four­
dimensional scalar product: (kx) = Qkt- k · r, 

Uk = [ (Ak + Qk) I 2Qk] 'I•, 

Vk = - (Bk I IBk I)[ (Ak- ~h) I 2Qk]'l·. (2.2) 

The functions Ak and Bk characterize the proper­
ties of the material and, in the general case, can 
take into account the anisotropy of the shape of the 
sample and the anisotropy of the crystalline lat­
tice. (The values of Ak and Bk for a uniaxial 
crystal are given, for example, in the review. [ 121 ) 
We give the values of these functions in the sim­
plest case, where the anisotropies can be neg­
lected: 

Ak = v (Ho + Dk2 + 2n:Mo sin2 Sk), 

Bk = 2n:yMo sin2 ek exp (2iq>k) I (2. 3) 

Ho is the constant magnetic field, M0 the constant 
magnetization, D a constant characterizing the 
exchange interaction, 'Y the gyromagnetic ratio, 
and Bk and <Pk the angles of orientation of the 
vector k. 

We introduce the magnon causal functions, 
which are defined as the mean over the vacuum of 
the chronological products: 

M_(xt- Xz) = (T{a(x1)a(x2)} )o, 

M--+(x1 - x2) = (T{a(xi)a+(xz)})o, 

M+-(x1- xz) = (T{a+(xi)a(Z2)})o 

M++(x1-x2) = (T{a+(xi)a+(xz)})o. (2.4) 

Calculation according to Eqs. (2.4), (2.1}, and (2.2) 
for arbitrary values of Ak and Bk lead to the fol­
lowing expressions for the functions M(x1- x2): 
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k=(Q,k); 

M_(k) = iB~~.* I (Q~~.2 - Q2 - iO), 
M-t-(k) = -i(A .... + Q) I (~~11.2 - Q2 - iO), 
M+-(k) = -i(A~~.- Q) I (Q~~.2 - Q2 - iO), 
M++(k) = iB11. I (Q~~.2 - Q2 - iO). 

(2.5) 

(2.6) 

The following identities have been used in the deri­
vation: 

1 "" Q 
=-.. \ dQQ 2 Q2 •0 exp{-iQ(tt-t2)}. m J k- -z 

-oo 

Equation (2.5) was obtained for an infinitely large 
volume V. If we assume V to be finite, then the 
integral must be replaced by the sum: 

(2:rt)-3 ~ d3k-+- v-1~. 
k 

3. INTERACTION OF PHOTONS WITH 
MAGNONS IN SECOND ORDER 
PERTURBATION THEORY 

The Hamiltonian of the magnetic dipole inter­
action can be written in the form 

W = -[II2(2!1Mo)''•(a+H<-> + aH<+>)- ~a+aH.],(3.1) 

(H is the operator of the variable magnetic field, 
1/ 2 J.L is the Bohr magneton, and H<±> = Hx + iHy. 

Matrix elements proportional to J.L 2 correspond 
to the ordinary scattering of the photon by the 
magnon. However, of more interest are the proc­
esses shown graphically in Fig. 1, inasmuch as 
their matrix elements are proportional to the 
larger quantity J.L(2J.LM0)1/ 2• (The solid lines in the 
graphs correspond to magnons, the dashed lines to 
photons, the direction of the process is from right 
to left.) Processes are considered below which 
are shown in Figs. 1a and 1b, with the emission of 
a magnon and a photon of very low frequency. Sim­
ilarly, one can consider processes (Figs. 1c and 
1d) with the absorption of a magnon. Thus, we 
shall be interested in the following part of the 
product of the operators W(x1)W(x2): 

-~ (2J.LMo) 'l•[a+(xi)H<->(xi)a+(x2)a(x2)Hz (xz) 

(3.2) 

a--~--- b -~---
c __ _____L__ d ___ L __ _ 

--=--~--'···· 
_-t__,;) __ _ 

FIG. 1. Diagrams of the interaction of photons with mag­
nons. 

Here we have taken it into account that 

~ {i4x1 ~ d4x2T {Wi(x1) W~ (x2)} 

= ~ d4x1 ~ d4x~T {W~ (xi) Wi(x~)} 

(W=Wi+W2). (3.3) 

When the expression for the matrix element is 
determined from the form of a graph, certain spe­
cific features, which are characteristic for the 
given interaction, must be considered along with 
the ordinary rules. To each process (for exam­
ple, graph 1a) there corresponds several matrix 
elements (graphs 1e), and the signs + and - for 
the internal magnon lines, which correspond to the 
indices of the causal functions, are opposite to the 
signs of the adjoining lines ( + and - of the exter­
nal lines correspond to the Fourier components of 
the functions a+ and a for the magnon, and H<+ l , 

H<-> for the phonon lines, and z corresponds 
to Hz)· In the calculation of the coefficient, it is 
necessary to take into account the factor which 
arises in the summation of the matrix elements 
with permuted coordinates (in the given case, the 
result is doubled). 

Thus, for the diagrams 1e and 1f we get the 
following matrix element: 

~. :rty(2yMo/1i) ''•{fhtc->(k')i(M++(k') v;_ .... , + M+-(k')u~-k') 

+ hAi+>(k') (M-+(k')v:_~~.·· + M--(k')u~-.~<·)]Hiz 
+ h;!l(k') ~(v:_ .... ,M++(k) + u:_ .... ,M-t-(k) )Hi<-> 

+ (v:_ .... ,M+-(k) + u:_ .... ,M_(k) )H1<+>1} 
X (nk-k' +•1)'1•6(ro- ro'- Qk-k'); (3.4) 

nk _ k' is the number of magnons, hA,(k') is the 
matrix element of the Fourier amplitude of the 
radiated field, k'= (w', k'), A. is the index of po-
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larization. The matrix element of the Fourier am­
plitude of the absorbed field (k = (w, k)), divided 
by v1/ 2, is replaced by the classical value %H1o 
inasmuch as the number of photons of the absorbed 
field is assumed to be large; in the general case of 
arbitrary polarization, the amplitude of the mag­
netic field H1 is a complex quantity. 

Upon a shift in the frequency of the radiated 
field, we get the following expression, with the 
help of Eqs. (2.2) and (2.3): 

= y[H0 + D(k- k')2 + 4nM0 sin2 Sk-k'p. 

x [H0 + D(k- k') 2]'1•. (3.5) 

The angular dependence of the frequency shift is 
greatly simplified if one can neglect the .exchange 
term. Let H0 ~ 103; then, in the optical band of 
interest to us (for example, lkl ~ 10 5 cm-1), the 
exchange term can be neglected if D ~ 10-9 Oe­
cm2. In this case, the frequency shift is of the or­
der 'YHo""' 1010 sec-1 ('Y = 1.8 x 107 oe-1-sec-1; it 
is assumed that the term with M0 does not in­
crease the order of the quantity w- w'). Conse­
quently, (w- w')/w « 1. The latter inequality is 
clearly valid also in those cases in which one can­
not neglect the exchange term. Therefore, it can 
be assumed that the vectors k and k' are identi­
cal in length, and one can set 

. 1 
(k- k')2 = 4lkj2sin22 a (3.6) 

in Eq. (3.5), where a is the angle between k and 
k'; this assumption is valid for the condition 

(3.7) 

The angle ek _ k' characterizes the direction of 
the momentum of the emitted magnon relative to 
the vector M0• In particular, let M0 1 k; then, for 
observation in a plane perpendicular to Mo (k' 1Mo), 
Ok - k' = 1r /2 and the angular dependence is deter­
mined by the exchange term alone. If the same k' 
lies in the plane (k, M0), then ek- k' = a /2 under 
the condition that the i...'lequality (3. 7) is satisfied. 
For a = 0, ek- k' = rr/2: thus, for small a, a jump 
in the frequency difference is observed, from 'Y Ho 
to y[H0(H0 + 4rrM0)] 112 • 

The probability of the process is determined by 
the square of the modulus of the matrix element 
(3.4). According to the estimate made above, the 
frequency of the virtual magnon (the optical range) 
is much greater than the frequency of the free 
magnon for the given value of the momentum. 

Therefore, one can neglect the quantities M __ and 
M++ in (3.4), while one can take the values i/w 
and -i/w for M-+ and M+-. We also take into ac­
count the relation 

hA+(k') = -i(2nliro')'l•(nA' + 1)'f•eA*, 

where n~ is the number of photons with momen­
tum k' and polarizations A = 1, 2; eA are the com­
plex unit vectors of the polarization. The square 
of the o function, after the usual transition 6(0) 
- t/2rr, is transformed to the expression (t/2rr) 
X(O(w-w'- gk- k'), then the finite lifetime of the 
magnon is taken into account and the o function 
is replaced by a nonsingular function which is as­
sumed to be Lorentzian and which has the value 
T /rr at resonance, where T is the relaxation time 
of the magnon. Finally, from the probability of the 
process under consideration, which is proportional 
to (nk _ k' + 1)(n~ + 1), it is necessary to subtract 
the probability of the reverse process (the photon 
w', absorbing a magnon, is transformed into the 
photon w), which is proportional to nk _ k'n~. As a 
result, omitting the factors which characterize the 
angular distribution and polarization of the radia­
tion, we get the following estimate of the total prob­
ability of the process per unit time: 

nlMot:H12 (nA' + nk-k•) I 2ro. (3.8) 

For an illustration of the calculation of the an­
gular distribution and polarization, we consider a 
special case: M 0 1 k, the variable field H1 is lin­
early polarized and directed along M0 (the z axis). 
The corresponding factor is equal to 

lu:_k'(e~ )c-l- v:-k'(e~ )<+>1 2, 

e1 = (f, + if2) /12, ~ = e,·; (3.9) 

fto f2, and k' /I k' I form a right-handed triplet of 
real orthogonal unit vectors. Let k' lie in the 
plane perpendicular to Mo; in this case, f2 can be 
conveniently directed along the z axis. Then (3. 9) 
does not depend on A, that is, the radiation in the 
perpendicular plane is not polarized. By directing 
the x axis along k', we obtain [under the condition 
(3. 7)] the relation «Pk _ k' = (rr -a) /2 and for the 
factor (3. 9) we find the value 

(Ak-k'+ 1Bk-k'lcosa)/2Qk-k' (Bk-k•=n/2). (3.10) 

A separate calculation for a = 0 leads to the re­
sult (Ak _ k' - I Bk _ k'l> /2gk _ k'• that is, for 
small a the probability undergoes a jump (if M0 

is sufficiently large). 
As calculation shows, the radiation in the other 

directions can be polarized. 
The effect considered in this section can evi-
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dently be observed by irradiation of ferrites, 
which are transparent for a given frequency, by 
laser radiation which is highly monochromatic and 
very intense. For an estimate of the probability 
(3.8), selecting the parameters w"" 1015 sec-1, 

M0 "" 102 Gauss, T"" 10-9 sec, we get 10-1 H~(n~ 
+ nk _ k'). Favorable possibilities for observations 
are given by the effect of the increase in the parti­
cles-here there is an analogy with the induced 
Raman and Brillouin scattering (see, for example, 
[ 131 ), the increase being a threshold effect that 
arises in this case if the probability of the process 
exceeds the probability of relaxation. 

Further, more detailed estimates are connected 
with the conditions of the arrangement of the ex­
periment and with the problem of the stability of 
the substance relative to the powerful radiation. 
By considering the possibility of accumulation of 
magnons, one can consider processes with absorp­
tion of magnons and radiation of the anti -Stokes 
component w" > w. In the case of ferrites, it is of 
interest to elucidate the role of the exchange 
branch of the energy spectrum of the magnons. 

4. INTERACTION OF MAGNONS WITH PHONONS 

In this section, the quantum interpretation of the 
processes of interaction of magnons with phonons 
is presented. This leads to the so-called indirect 
phonon instability, which was discussed earlier 
from the classical point of view. [11J Auld consid­
ered the decay of a spin wave, which corresponds 
to a homogeneous type of precession, into two 
longitudinally polarized phonons. The calculations 
were carried out for a special case of the azi­
muthal angle of phonon propagation. As was pointed 
out, [Ul such a calculation is sufficient in the case 
of isotropy of the magnetostrictive interaction 
(equality of the constants b1 and ~). 

The method with the use of the causal functions 
of Sec. 2 is applied below to the calculation of a 
more general variant, corresponding to an arbi­
trary angle of propagation and to all three types of 
phonon polarization. 

The Hamiltonian of the magnetostrictive inter­
action has the form 

(btll I 2Mo) [ (a2 + a+2) (uxx- Uyy) 

+ 2a+a(uxx + Uyy- 2uzz)) + (b2 I Mo) [i~-t(a2 - a+2)uxy 

+ (2~-tMo) 't. (au<+lz + a+u(-)z)], ( 4.1) 

where x, y, z are the cubic axes, the direction of 
M0 coincides with z, b1 and b2 correspond to the 
constants of the research of Auld, [11J uij is the 
deformation tensor, defined by the operator ex­
pression: 

U;j = ~ iV-'f, ~ (fi/2po:n,~) 't. kvu; ij(bk,_e-i(hx)- bt~ei(hx)), 
k.~ 

(k.x) == ffil!~t-kr, vu,i; = (eu,ikj + ek,.,iki) I k, (4.2) 

+ 
bkA and bkA are the annihilation and creation op-
erators of the phonon, A. is the index of polariza­
tion (A. = 3 corresponds to longitudinal polariza­
tion, A. = 1, 2, to transverse); the polarization vec­
tor Ek1 lies in the (z, k) plane, while Ek1, z 
=-cos e; 

w111 = 00112 = k(cu/ p)''•, W113 = k(cul p)'l•; 

c11 , c44 are the elastic constants of the interaction 
p the density of the medium, u<±>z = uxz ± iuyz· We 
introduce the expressions vkA, ij : 

v,, xx = sin 26 cos2 cp, v,, vv = sin 26 sln2 cp, Vt, zz = -sin 26, 
IJt, xy = 1!2 sin 20 sin 2cp, Vt,(+Jz = (v,, Hz)* = cos 26ei'P, 

V2, xx = -sin 6 SiD 2cp, V2,, yy = Sin 6 Sin 2QJ, V2, zz = 0, 

V2, xy = sin 6 COS 2cp, V2, (+)z = (V2(-)z) • = i COS 6 ei'P, 

V3, xx = 2 Sin2 6 COS2 Ql, V3, yy = 2 Sin2 6 Sin2 Ql, 

Vs, zz = 2 COS2 6, 
li3, xy = sin2 6 sin 2cp, Vs, (+)z = (va, (-)z) * = sin 20 ei'P, 

(4.3) 
e and cp are the angles· of the vector k. 

We note that by using the part of the operator 
( 4.1) that is linear in a and a+, it is comparatively 
simple to obtain the dispersion equation for the 
mixed magneto-elastic excitations, which have 
been repeatedly derived by classical methods. In 
what follows, it is assumed that the frequencies 
under consideration are far from points of inter­
section of the magnon and phonon dispersion char­
acteristics; therefore, one can speak of pure mag­
non and phonon states. 

The indirect phonon instability of Auld is con­
nected with the processes shown in the diagrams 
of Figs. 2a and 2b (the wavy lines are phonons, the 

FIG. 2. Diagrams of the 
interaction of magnons with 
phonons. \\ 

a 

incoming magnon line corresponds to homogeneous 
precession: k = 0). The vertices of first and sec­
ond order with phonon lines are determined by the 
linear and quadratic terms in (4.1). The three 
magnon vertices of the graph 2b correspond to the 
interaction of the magnetic moment with the de­
magnetizing field of the spin waves, which is re­
sponsible for the ordinary transverse instability. 
It is convenient to write down this reaction in the 
form 
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-n~-t(2~-tMo)'l•[a+aV.V-2 (V_a+ + V+a) 

+ (a+V-+aV+)V-2 V.a+a], 

v. = a I az, v ± = a; ax+- w I ay. (4.4) 

We shall assume that the pumping is brought 
about by a transverse variable magnetic field with 
frequency w and with circular polarization, [ 111 

and we represent Mx + iMy for homogeneous pre­
cession in the form Ae-iwt. If the pumping occurs 
exactly at resonance, then A can be regarded as a 
real number; in the general case, A is complex. 
In the calculation of the elements of the scattering 
matrix, the corresponding homogeneous precession 
operator a ought to remain unpaired, the matrix 
element of this operator being replaced by 
A(2!-!Mo) 112• Therefore, terms in a+ 2 can be neg­
lected in ( 4.1) from the very beginning. 

The matrix element of the second order proc­
ess (Fig. 2a) involves components with b~ and 
b1b2: from the terms of first order, we obtain the 
expression 

2(vu, (+)zM __ + DkA, (-)zM+-) D-u, xy, (4.5) 

from terms of second order-

2(vkA,(+l•JIL_ + VU,(-)zM+-) (D-kA,xx- D-kA,yy} 

+ 2 (vkA, (+)zM-+ + Vu, (-)zM++) 

X (v-u, XX+ D-u, yy- 2v-u, zz). (4.6) 

By M here are understood the Fourier compo­
nents (2. 6) for k = ( 1h w, k ). It is convenient to 
compute the remaining factor separately; here, it 
is necessary to take into account the doubling of 
the result, due to the summation of the matrix 
elements with permuted coordinates, and the dou­
bling resulting from the possibility of two variants 
of the diagram 2a: the momenta of first ano second 
phonons are equal to k and - k or - k and k. 

We shall consider here the case of identical 
polarization of both phonons. 

We write the final expression for the matrix 
elements in the following form: 

inA 'V b2k2il ( .2o> kA - Ul) ·~ ·~ . . 
2M 2 (n 2 ~2/4) (nkh+ 1) •(n-u+ 1) •e•<Psm28/A, 

0 POOkA ~~k -.oo 

h =cos 28[bt(4Qt + oo) 

+ i(bz- bt) (Qt- 1l2oo)e-2i<P sin 2qJ], 

/2 = - [bz + i(bt -· bz)e-Zicp sin 2cp] (Q- 1l2w), 

/3 = 2[bt(2Qt cos 28 + oo cos2 e) 

-i(b2 - bt) (Qt - 1l2oo) e-2icp sin 2cp sin2 8], 

Q = Ak + IBkl, Qt = Ak- IBkl, Bk = 1Bkle2i<P; 

(4.7) 
nk;\ is the number of phonons. 

In the calculation of the matrix element of third 
order (Fig. 2b) it is necessary to keep in Eq. (4.1) 
only components linear in a and a+, while in (4.4), 
it must be kept in mind that one of the a corre­
sponds to homogeneous precession (we denote the 
corresponding part of a by a0); therefore, (4 4) is 
transformed into 

-nJ..t (2~-tMo) 'l•ao(2a+V _ V-2 V .a+ 

(4.8) 

In the calculation of the chronological product 
of the three operators of interaction, the functions 
a and a+ which enter into the product 
[a(xt)U(+Jz(Xt) + a+(xt)U(-)z(Xt)] 

X(a(xz)U(+)z(X2) + a+(x2)ll(-)z(Xz)J, 

must be connected with the functions a(x3) and 
a+(x3) in Eq. (4.8). As a result, the following sum 
is obtained: 

Vu, (+JzV-kA, <+Jz[2e-i'~'M~-+ + eicp(M~M-+ + M-~-) l 
+ Dk).,(-)zD-kA,(-)z[2e-i'I'M+~++ 
+ ei<P(M+_['If++ + M++M+-H 
+ Vu, (+)zD-kA, (-)z[2e-i<P]Itf~++ 

+ eicp(M-M++ + M-~+-)] 
+ vu, (-)zD-U, (+)z[2e-icpM~f-+ 

+ ei<P(M+-M-+ + M#-)]. (4.9) 

In Eq. (4. 9), M = M( 1/ 2 w, k ); in the derivation, it 
was taken into account that 

M('l2oo, -k) = M(ll2oo, k), V-V-2V. _.. 1/2 sin28e-i<P, 
V + V-2 V. _.. 1/2 sin 28ei<P, 

the factor 1/ 2 sin 2 e was not included in Eq. (4. 9). 
As in Eqs. (4.5), (4.6), only the factor v±kA., ij of 
the deformation tensor remains. By analogy with 
the previous case, it is necessary in the calcula­
tion of the total factor, to take into account the co­
efficients 3 (permutation of the coordinates in the 
cross terms) and 2 (two variants of the values of 
the momenta: k, -k and -k, k). Moreover, the 
result should be doubled because of the two possi­
bilities of coupling (for example, a(x1) with the 
first function a+ (x3), a(x2) with the second, and 
conversely). We note that ( 4. 9) has a definite 
structure-the first indices in the causal functions 
are opposite to the indices ± y of the functions 
vkA. Therefore, the next three terms are auto­
matically obtained from the first. 

The sum ( 4. 9) is somewhat simplified by means 
of the equation 

Vkh, (-)z = Vu, <+>•e-2icp (A. = 1, 3), 
Dk2, (-)z = -Vk2, (+)ze~icp, (4.10) 

To sum up, for the matrix element corresponding 
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to the process of Fig. 2b, we obtain the expression 

-in2Ay2b22k2 
M (Q 2 2/4 ) 2 6(2w,.~..-w)(nkl..+1)'12 opWkl.. k - w 

gl = -2QJ (QJ + 1/2w) cos2 28, 

g2 = -w(Q + 1/2w) cos28, 

ga = 2Qt(Q1 + 1/2w) sin2 28. (4.11) 

The probability of the process is determined by 
the square of the modulus of the matrix element. 
If it is necessary to consider both processes simul­
taneously (see Fig. 2a and 2b), then both matrix 
elements are summed in the calculation of the 
probability. The square of the o function is re­
placed by the expression tT /4-rr2 (T is the relaxa­
tion parameter of the phonon), since 

6(2w""'- w) = 1126(wkl.. - 1/2w)-+ T I 2n. 

The threshold value of the quantity A, which 
corresponds to the beginning of the unstable proc­
ess, is determined from the relation wT = 1, [ 101 

where w is the probability, calculated per unit 
time and referred to a single phonon (after sub­
traction of the probability of the reverse process, 
the net effect is proportional to nkA + n-kA>· 

In the special case A. = 3 and cp = 0, we obtain 
from Eqs. (4.7) and (4.11) an expression that is 
identical with the expression obtained in [ 111 , if 
we neglect the relaxation of the magnons. In the 
comparison, it is necessary to take into account 
the connection of the relaxation time of the pho­
nons and the quality factor Q: T = 2Q/wkA.· It 
should be noted that in the calculations of this sec­
tion, in contrast with the calculations of Auld, [ 111 

relaxation of magnons was not taken into account. 
(It was assumed that Qk and 1/ 2 w, which is iden-

tical with wkA.• are sufficiently far away from each 
other.) The problem as to how correct are the dif­
ferent ways of introducing the damping phenome­
nologically requires special attention. 

In conclusion, the author expresses his gratitude 
to D. N. Klyshko, E. V. Lebedeva and A. I. Pil'­
shchikov for useful discussions of the work .. 
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