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The magnitude and location of the resonance maxima on the plot of the de component of the 
Josephson tunneling current is calculated. The theory is based on an account of the electromag­
netic field of the Josephson current and of the conditions of inclusion of the tunnel junction in the 
external electric circuit. 

JosEPHSON[U has shown that the current through 
a tunnel junction in a system of coupled supercon­
ductors will be nonstationary at nonzero voltage on 
the junction. This result was subsequently dupli­
cated by Ambegaokar and Baratoff. [ 2 1 A more ac­
curate derivation, which takes into account the 
possibility of the time variation of the bias, is 
given in [ 31• 

The physical interpretation proposed in [ 31 for 
the effect is based essentially on a consideration 
of the entire electric circuit in which the tunnel 
junction is connected. The point is that inclusion 
in the circuit ''prepares'' states with definite phase 
difference cp between the superconductors. The 
condition for the connection into the circuit is ex­
pressed mathematically in the form of a differen­
tial equation with respect to the unknown phase dif­
ference (henceforth simply phase). From this point 
of view, the tunnel junction is a nonlinear element 
(since the current through the junction is equal to 
js sin cp). The occurrence of nonstationary solu­
tions in a certain range of the circuit parameters 
is essentially connected with the nonlinearity of 
the system as a whole. In [ 31 there was consid­
ered, for purposes of illustration, an idealized case 
of the simplest type of circuit, consisting of a volt­
age source of internal resistance R. The real si­
tuation, however, is much more complicated. 

The tunnel junction is a thin film (thickness d 
~ 10 A) of dielectric, with transverse dimensions 
l ~ 1 mm, separating two superconductors. The 
flow of nonstationary current through the junction 
induces in it an electromagnetic field which can 
propagate in the junction practically without damp­
ing, but with a reduced velocity (under ordinary 
conditions, by a factor of approximately 30). [ 41 

Since the transverse dimensions of the junction 
are comparable with the wavelength, the field in­
side it should be described by Maxwell's equations. 

In the presence of a magnetic field (the current's 
own field or an external field) the phase cp be­
comes a function not only of the time, but also of 
the coordinates, Maxwell's equations lead,·as 
shown in [ 51 , to a nonlinear partial differential 
equation with respect to the phase cp. 

As noted in [S-a 1 , resonance can occur in the tun­
nel junction if the Josephson frequencies, which 
are determined by the applied emf, coincide with 
the natural frequencies of the electromagnetic 
field inside the junction. This leads to the appear­
ance of maxima on the voltage-current curve of 
the component of the Josephson current. A theory 
for the voltage-current characteristic was con­
structed on this basis in several recent papersP-91 

However, as will be shown below, that theory is 
not fully satisfactory. For this reason we shall re­
view it here anew. 

According to Josephson[ 11 (for a microscopic 
derivation see [ 31 ), the voltage V on the barrier 
is connected with the phase by 

V=~ d<p 
2e dt · (1) 

In the presence of an alternating electroma.gnetic 
field, this relation must be generalized, for in this 
case the potential difference loses its direct mean­
ing and should be replaced by the gauge-invariant 
concept of the voltage j 1 E ell, which depends both 

2 
on the choice of the initial and final points 1 and 2, 
and on the path of integration. Let the junction 
plane be the XOY coordinate plane. We must con­
sider the voltage between points lying on a line 
perpendicular to the surface separating the super­
conductors. The integration path is then naturally 
taken to be the straight line joining points 1 and 2. 
The direction of the external magnetic field is 
taken to be the OY axis. 

It is easy to show, in analogy with [ 41 , that the 
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dependence of the voltage on the distance of the 
chosen points 1 and 2 to the interface between the 
superconductors is quite weak. Thus, if 1' and 2' 
are points located on the interfaces between the di­
electric and the first and second superconductors, 
respectively, and 1 and 2 are points inside each of 
the superconductors <I z 12 l > A.L), then the corre­
sponding voltages differ by a quantity on the order 
of (A. L/A.)2, where A. L is the London depth of pene­
tration and A. is the wavelength, i.e., a quantity 
negligibly small at the wavelengths customarily 
used in experiment. It will be convenient below to 
take points 1 and 2 inside the superconductors. 

Let us consider Maxwell's equation 

aEz aEx 1 aHy _ O (2) 
ax -a;:-~&t-

and let us integrate it along a straight line paral­
lel to the z axis, from the point 1 to the point 2. 
Using the definition of the voltage as well as for­
mula (1), and recognizing that by virtue of the 
Meissner effect the fields decrease exponentially 
along the London penetration depth, we obtain 

_!_(acp _ 4eA.LHy) = O. (3) 
at ax he 

Integrating this relation with respect to time and 
assuming the integration constant equal to zero, in 
inasmuch as the phase is constant in the absence 
of the field, we have finally 

acp = 4eA.L Hy. 
ax he 

(4) 

In perfect analogy, we obtain 

acp . 4eA.L H (5) 
ay=-~ x· 

We note that in (4) and (5) the values of the fields 
are taken at a certain point z inside the dielectric 
layer. Let us consider now at the same point Max­
well's second equation 

8Hy 8Hx e 8E, 4:rc . 
---------=-]z. 
ax ay c at c 

(6) 

In view of the slow variation of Ez in the dielec­
tric layer we have 

1 l!' 1 r v h acp 
Ez ~ d ~ E,dz = d .1 Exdz = d = 2ed at· 

1' 1 

Substituting relations (4), (5), and (7) in (6), we 
obtain 

where 

(7) 

(8) 

cz = c2d I 2eA.L, 'Al' = hc2 I 16:rceA.Lis. (9) 

In the derivation of (8) we have assumed that 
the current density is jz = js sin cp. This is ap­
proximately valid at temperatures much lower than 
critical, and at voltages smaller than the thresh­
old V < (.61 + .t.2)/e, where .61 and .62 are the gaps 
in the energy spectra of the first and second super­
conductors. Under these conditions the quasiparti­
cle current is small, and the tunnel current re­
duces merely to the Josephson current. Equation 

bt . d f' t . [ 51 (8) was o ame 1rs m . 
Since in practice there are losses due to the 

excitation of the normal component in the super­
conductors by the alternating field, to the weak 
quasiparticle current, and possibly also to other 
mechanisms, Eq. (8) should in principle be sup­
plemented by the term - (1/ c2r) 8cp /8t, where T 

is a quantity which takes effective account of the 
damping. In view of the presence of damping, the 
problem of solving Eq. (8) must naturally be for­
mulated without initial conditions. 

For simp,licity we consider henceforth a "lin­
ear" junction, for which we can neglect the de­
pendence of cp on y. 

The experimentally measured quantity is the de 
component of the total current through the junction 

l T 

l=j8 ~ dx ~ ~ sincp(x,t)=j.A.l(cpx'(l,t)-<px'(O,t)). 

0 0 (10) 

The bar denotes averaging with respect to time. 
We now proceed to formulate the boundary con­

ditions. It is physically clear that they should be 
determined by the manner in which the tunnel junc­
tion is connected in the electric circuit. It must be 
noted here that under the experimentally realized 
conditions, the ac component is rapidly damped 
outside the junction. This circumstance can be 
taken into account effectively by loading the output 
with a complex impedance p. We therefore have in 
terms of Fourier components 

V(O, ro) + Pti(O, ro) = 0, 

V(l, ro) - P2i(l, ro) = 0, ro =f= 0. (11) 

For the de component the relations are 

R(i(O)- i(l)) + V(O) = f£, Vi(O) = V(l). (12) 

To formulate the boundary conditions in terms 
of the phase, it is necessary to have, besides (1), 
a relation between the phase and the current. This 
relation can be readily obtained from the London 
equation, and is of the form 

hc2 acp 
i = - f6:rteAL 8x (13) 
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Using (1) and (13), we rewrite the boundary con­
ditions in the form 

-- -- 8nA.L -- 16neA.L Ef 
CJlx'(l)- CJlx'(O) + Rc2 cpt'(O) = h~R' 

CJlt1 (0) = cpt' (l) (15) 

To solve (8) we use perturbation theory, assum­
ing the nonlinear term to be small. In the zeroth 
order we obtain 

cpo =rot+ kx. 

It follows from (15) that w = 2e[f /ti. Inasmuch 
as in the zeroth approximation the only currents 
in the superconductors are the eddy currents in­
duced by the external magnetic field He, we find 
from (4) that k = He4eA.Ljtic. 

The first-approximation correction to the phase 
is determined from the equation 

iJ2cpt 1 iJ2cp1 1 . 
-------=-sm(rot+kx). (16) 

iJx2 C2 iJt2 'J-,;2 

Inasmuch as cp1 vanishes, q7i (x, y) satisfies the 
boundary conditions (14) and the equation 

tllcpi(x, ffi) 1 .,. ffi ( 1 ) __:_;_:__:___: + x2rn1 (x ro) = -- e' x x = -=-, 7 
dx2 "' ' 2i'J-,i2 ' c 

and the de component of the total current is ob­
tained from the formula 

l 

I= is~ Re cpi(x, ro)e-ihx dx. 
0 

(18) 

We present the solution of the problem for two 
limiting cases: symmetrical, Pi = p2 = 00 , and 
assymetrical Pi = p, p2 = oo. For simplicity, we 
neglect the imaginary part of p in the final formu­
las. 

In the symmetrical case 

l=~ q 
21..;2 x2 sin~(xl/2) + q2 cos2(xl/2) 

x{ (sin[(:=~)l/2] y +(sin[(:~~)l/2]Y}. (19) 

In the asymmetrical case 

1 = ~ q { ( sin[(x- k)l/2] )2 
21..;2 x2 sin2 xl + q2 cos2 xl x - k 

+ ( sin[(x + k)l/2] )2 
, x+k 

+ 2 8 lsin[(x-k)l/2]sinl(x+k)l/2]} (20) 
co x x2- k2 

Assuming that q « K, corresponding to small 
distortion of the boundary conditions for an open 
cavity, [B 1 we obtain from (19) and (20) the loca­
tions of the resonant maxima Kl = 27Tn in the sym­
metrical case and K l = 1rn in the asymmetrical 
one. Thus, in the asymmetrical case the theory 
leads to a series of equidistant resonance maxima 
with distances between them equal (in terms of 
voltage) to t::..[f n = 7Ttic/2el. 

In the symmetrical case there are only "even" 
maxima. The largest height of the n-th maximum 
is reached in both cases in a magnetic field 
Hn = Efn x (E/2A.Ld)i 12• The height of the n-th 
maximum is given in the symmetrical case by the 
formula 

lo l 1 n2 + x2 
l ---- sin22nx, (21) 
max- 21..;2 q 2n2 (n2- x2)2 

where 4>/4>0, 4> is the magnetic flux through the 
junction, 4>0 = 1rtic/e the flux quantum, and J 0 = jsz· 

In the asymmetrical case 

(p = 0, ± 1, ± 2 ... ). 

n=2p 
n=2p+1 

(22) 

The results of the theory explain the experi­
mental data obtained in [ 101• 

In the case of small junctions, for which K l « 1, 
the expression for J reduces in both cases to the 
following: 

1 = __!_ Jo2 _ 1 ( sin nx )2 ( 23) 
2 [f /p 1 + (ropC)2 ---;,;- ' 

where, using the expression for A.j, c2, and q, we 
have introduced a junction capacitance C and an 
ohmic load p, equal to p for the asymmetrical 
case and p /2 for the symmetrical one. 

Since the exact solution of the nonlinear equa­
tion (8) cannot be obtained in the general case, it 
is of interest to note that for nearly pointlike junc­
tions, we can obtain an exact solution by neglecting 
the junction capacitance and disregarding the mag­
netic field. The average current is in this case 

(24) 

and the ac frequency is w--/1- (J0R/1')2• Neglecting 
the self-action, J 0 « Ef/R, (24) agrees with (23), 
and the frequency equals the Josephson frequency. 
Formula (24) pertains to the case when I /R > J 0; 

in the opposite case, the stationary mode corre­
sponds to the Josephson direct current. 

An exact solution can be obtained also for the 
Josephson direct current in a magnetic field, taking 
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into account the effects of ''magnetic self-action.'' 
Equation (8) for a linear junction becomes [ 11] 

d2cp 1 . 
--=-sm!p 
dx2 "-/ ' 

(25) 

and the boundary conditions are written in the form 

'(l) _ '(O) = 16neA.L tS 
!Jl <p fic2 R ' 

!p' (l) + !p' (0) = 8n:A.L He. 
.r. 

(26) 

(27) 

The solution of (25) is expressed in terms of 
elliptic functions. Two possibilities must be dis­
tinguished: 1) the external field predominates over 
the self field, and the total magnetic field, and con­
sequently the current along the x axis, does not 
reverse sign, 2) the opposite case. The density of 
the Josephson current in the first and second cases 
respectively is given by the formula 

Xo-X Xo-X 
j, = 2j.cn-k--sn-k--, 

/..; /..; 
(28) 

. . Xo-X Xo-X 
Jz = 2]sk sn ---dn --,-, 

/..; II.; 
(29) 

and the current along the x axis is respectively 

ix = -~_!_dn xo-x 
e/..L/..; k k/..; ' 

(30) 

. 2nli Xo- x 
~x= ----ken--. 

e/..L/..; /..; 
(31) 

Here sn(z, k), cn(z, k) and dn(z, k) are elliptic 
functions with modulus k. The constants x0 and k 
are fixed by the boundary conditions. 

If the self field can be neglected compared with 
the external field, then formula (28) leads to the 
well known result 

I (H)= I (0) I sin na> I <Do I (32) 
max max n<D I <Do • 

To the contrary, for a vanishing external field we 
obtain from (29) 

I -4''· k,~1 k2.sn(ll 2!..;) max - ]sll., max r - . 
lkl dn(ll2/..;) 

(33) 

For small junctions ( l « A.j) (33) reduces to the 
equality Jmax = jsl. In the opposite case ( l » A.j) 
we obtain the effect of self-limiting of the current 

(34) 

The self-limiting effect was first predicted by 
Ferrel and Prange. [ 111 However, they considered 
the exceptional case when k = 1, at which the equa­
tion can be integrated in terms of elementary func­
tions. Physically, on the other hand, there is 
nothing to single out this case at all. The general 

physical picture differs from that considered in 
[ 11 1 in that the magnetic field does not decrease 
with increasing depth in the junction, but oscillates. 
The cause of self-limitation lies in the appearance 
of a layered current structure, as seen from for­
mulas (29) and (31). 

An examination of the limiting cases that admit 
of exact calculation shows that the method of lin­
earizing Eq. (8) is valid if 1) J 0 « tS/p and 
2) l « A.j or J 0 « Jm, where Jm is the current in­
duced by the magnetic field. 

To conclude the article, we make several re­
marks concerning papers [ 7- 91 in which the solu­
tion of Eq. (8), supplemented by a term that takes 
damping into account, is sought (in our notation) 
in the form 1> 

(jl = wt + kx + <D (x, t), (35) 

where the small addition <I> (x, t) satisfies the 
boundary conditions <1>~(0, t) = <P~(l, t) = 0 (reso­
nator with open ends[8l). Relation (10), which with 
allowance for damping takes the form 

l 

!Jlx1 (l, t)- !Jlx' (0, t) = ~2 S sin !p dx 
'Jv, 0 

l 
1 \ !JJ(T)-cr(O) 

+ ik J T dx, 
0 

(36) 

reduces in first order in the current (and second 
order in cp) to the equality 
---- --- l 

lflx(2)'(l, t)- !Jlx(2>'(0, t) = - 1 \ !p<1>(x, t)cos !po(x, t)dx 
/.. .2 J 

' 0 

1 ~~ !p<2l (T)- !Jl<2l (0) +--- T dx. c2't' 
0 

(37) 

It is clear therefore that, by virtue of the 
boundary conditions, the de component of the total 
current (Josephson and ohmic) vanishes and the 
average current in the circuit is equal to wl/c2T­

the zeroth-approximation term-which naturally 
has no maxima. The authors of [ 7 - 91 , however, 
identify the observed current with the first term in 
the right side of (37), obviously without any justi­
fication. We emphasize that, as follows from our 
work, the existence of a de component of the tunnel 
current is due physically just to the deviation of 
the boundary conditions from those for an open 
cavity. 

The authors thank I. K. Yanson for useful dis­
cussions. 

1>Inasmuch as now wt + kx is not a solution of the zeroth­
approximation equation, it would be necessary to take cp0 in 
the form wt + kx + wx' /2f! r. 
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