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The results are presented of systematic investigations of the cyclotron resonance in indium 
single crystals. The measurements were carried out at a frequency of 18.7 Gc and sample 
temperature of 1. 5o K. The anisotropy of the effective hole and electron masses was investi
gated in the crystallographic planes (OlO), (llO), (lll), (Oll), and (001). An analysis of there
sults obtained made it possible to find the carrier velocities on the Fermi surface. For exam
ple, the hole velocity was determined along a surface ''rib'' lying in the (00 1) Brillouin plane, 
and was found to be 0. 73 x 108 em/sec. It was established that the effective mass anisotropy 
(variation from 0.11 to 2.2 me, i.e., by a factor of 20) and the carrier velocity anisotropy 
(variation from 0.73 x 108 to 1.10 x 108 em/sec, i.e., by a factor of 1.4) were in good agree
ment with the almost-free electron model (1-0PW), in which the carrier mass me was taken 
to be 1.6 me. The dimensions of the hole Fermi surface along the directions [100] and [001] 
(0.91 and 0.78 h/a, respectively) were determined using the cyclotron resonance cutoff effect 
in a thin sample. A number of experimental observations were obtained which were not con
sistent with the 1-0PW model. To explain them, calculations were made of some features of 
the Fermi surface model in the 2-0PW approximation, which made it possible to determine 
the effective potentials of the indium lattice: IV 111 1 = 0.07 ± 0.015, I V002 l = 0.055 ± 0.01, 
IV200 I < 0.015 [in (h/a)2/2mc = 0.329 Ry units]. 

AccORDING to the model of almost-free elec
trons, the Fermi surface of indium consists of two 
parts: a hole surface in the second zone and an 
electron surface in the third zone, the volumes of 
these parts differing by about one order of magni
tude. The systematic experimental investigation 
of the Fermi surface of indium began only rela
tively recently. The majority of the investiga
tions, [ 1- 61 carried out by various methods, dealt 
with the shape of the Fermi surface. The ultra
sonic investigations of Rayne[ 11 have basically 
confirmed the almost-free electron model of in
dium, showing that the dimensions of one part of 
the surface are approximately three times as 
large as those of the other part. Fuller data on 
the electron Fermi surface of indium have been 
obtained by investigating the de Haas-van Alphen 
effect. [ 21 From this study, Brandt and Rayne have 
deduced that the electron surface consists of tubes 
which become narrower at their ends, and whose 
axes are directed along [110] and [llO]. Also, os
cillations have been observed in the case of tubes 
elongated along the [011] and equivalent axes; the 
former are called the {3 tubes, and the latter the 01 

tubes. The exact dimensions of the Fermi surface 
have been found by Gantmakher and Krylov[ 31 by 
investigating the radio-frequency size effect. They 
have been able to show that the {3 tubes are joined 
end to end and form a surface topologically equiv
alent to a torus, but they have not obtained any in
formation on the 01 tubes. Several investigations 
of the galvanomagnetic properties of indium, of 
which Ga'ldukov's recent measurements[ 41 were 
the most accurate and complete, have established 
that indium has no open trajectories. 

The first observations of the cyclotron reso
nance (c.r.) by Castle, Chandrasekhar, and 
Rayne[ 51 have shown that there are two groups of 
effective masses in indium, differing by a factor 
of about three. The systematic investi~ation of the 
c.r. was begun by the present authors, 6 1 who have 
established that the strongest resonances occur 
for the hole orbits of the Fermi surface in the 
second zone, when the direction of the magnetic 
field is close to the directions of the axes [001] 
and [100], as well as for the electron orbits of the 
Fermi surface in the third zone. This investiga
tion[6] also included experiments on the c.r. cut-
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off in a thin sample, from which the extremal di
mensions of the hole surface along the [ 00 1] direc
tion have been obtained. The results of these 
measurements are in good agreement with the data 
on the size effect. [ 31 Further investigations, re
ported in the yrese~t paper, have established new 
c.r. in the (010), (111), and (001) planes, which 
were investigated in a preliminary way in [ 61 ; the 
anisotropy of these resona!_lces was !ound, the 
crystallographic planes (110) and (011) were in
vestigated, and the main dimensions of the hole 
surface were determined from the c. r. cutoff. 

The determination of the carrier velocities and 
their anisotropy was regarded as no less important 
than the investigation of the shape of the Fermi 
surface. There are several experimental methods 
for determining the carrier velocity. 

1. Measurements of the electronic contribution 
to the specific heat[ 71 make it possible to deter
mine the carrier velocity averaged out over the 
whole Fermi surface. 

2. The value of the effective carrier mass for 
a narrow strip of the Fermi surface can be used 
to find the average velocity along such a strip. 
The effective mass is found from the temperature 
dependence of the amplitude of quantum oscilla
tions[21 or, more accurately, by the c.r. method. 
As shown in the present paper, the distribution of 
velocities on the Fermi surface can be deduced 
from the anisotropy of the average velocity for 
various directions of the magnetic field. 

3. In those cases when the c.r. can be detected 
at an elliptical limiting point, the carrier velocity 
at that point can be determined from the value of 
the effective mass and that of the Fermi surface 
curvature. The velocity of holes along the [111] 
direction was found in this way. [ 81 

4. The velocity of carriers at an elliptical lim
iting point of the Fermi surface can be also deter
mined by measuring the c.r. shift due to the Dop
pler effect when a magnetic field is directed ob
liquely to the surface of the sample. A knowledge 
of the electromagnetic field distribution in an in
dium skin layer (investigated in [ 81 ) makes it pos
sible to determine the velocity of electrons at sev
eral points of the electron Fermi surface. Such 
experiments will be described in a separate com
munication. 

5. Very recently, a new method of measuring 
the carrier velocity has been discovered. In a film 
structure, one of whose components is a thin poly
crystalline layer of indium, tunnel current oscilla
tions have been observed. [ 9 1 This effect makes it 
possible to determine the carrier velocity in in
dium, which is found to be VF = 1.23 x 108 em/sec. 

FIG. 1. Orientations of the 
plane surfaces of the samples 
( cf. Table I). 

[001} 

On the whole, the results of the present investi
gation (like those reported in [ 1- 91 ) are in good 
agreement with the model of almost-free electrons, 
developed in the approximation of one orthogona
lized plane wave (1-0PW), if the effective lattice 
potential is assumed to be negligibly small. [ 101 

Slight differences between the experiment data and 
and the 1-0PW model, found in the present investi
gation, are satisfactorily accounted for by the 
2-0PW model, for which a certain effective lattice 
potential is assumed. 

EXPERIMENT 

The measurements were carried out by the fre
quency modulation method[ 111 at 18.7 Gc; the log
arithmic derivative of the reactive component of 
the surface impedance of the metal was deter
mined. The samples were indium single crystals 
containing less than 10-3% impurities. The sam
ples were grown from the melt in a polished de
mountable quartz mold and were in the form of 
disks, 18 mm in diameter and 1 or 0.24 mm thick; 
their properties are given in Table I and Fig. 1. 
To prepare thin samples, we placed, in a disk
shaped quartz mold, a quartz disk of the same di
ameter as the mold but thinner, so that the sum of 
the thicknesses of the quartz disk and the sample 
was 1 mm. After dismantling the mold, the grown 
single crystal was placed in a strip resonator, 
similar to that shown in Fig. 1a in [ 121 . A half-

Table I 

s Angle between indicated Orienta-s axis and its projection tion of 
Ul. on sample surface plane sur 
"' " " face of 

0. = 
[100] 1 [110] 1 [011] 1 [001] 

sample* "" s u (cf. Fig. 1 
" ~ "' 
I 1 2°20' 45' (010) 

II 1 2°15' 30 (HO) 
III 0.24 1 °40' 2°50' (HO) 
IV 1 5°50' 20' (110) 
v 1 30' 50' (Hl) 

VI 1 1 °10' 20' (011) 
VII 0.24 2°50' 0' (001) 

*Within error governed by the orientations listed 
in the table. 
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wave resonance strip had the dimensions 6.5 x 3 
x 1 mm. Thus, high-frequency currents were 
flowing only along the central part of the sample, 
representing about a tenth of its surface area. As 
shown in Fig. 1a in [ 121, the single crystal was not 
fixed to the resonator but was freely supported by 
a horizontal quartz disk so that repeated cooling 
of the sample did not damage it. 

The average thickness of a thin sample, deter
mined on completion of the experiments, was found 
to be equal to the difference between the heights of 
the substrate surface and several points on the 
sample's surface. A double microscope of the 
MIS-11 type was used as an indicator of the posi
tion of the surface to within 0.5 J.l., without making 
contact with the surface; the vertical motion of the 
microscope was measured with an optical level to 
within 0.2 J.l.· The average thickness of both thin 
samples Iniii and InVll was found to be the same 
and equal to 0.240 ± 0.002 mm. 

A magnetic field H was applied parallel to the 
flat surface of a sample. The field could be ro
tated through any angle in the plane of the surface 
of the sample and could be inclined to the surface 
by up to ~ 1°. The rotation was measured to with
in ±15' by means of a circular scale fixed to an 
electromagnet, and the inclination was measured 
with a quadrant optical lever to within ± 15". An 
inclination of the electromagnet up to 10' could be 
determined by means of an autocollimator of the 
AKT-250 type to within ± 2". 

At helium temperatures, the sample and its 
support could be rotated in the resonator, about a 
vertical axis, with respect to the resonator strip. 
This altered the polarization of the high-frequency 
currents in the sample with respect to the crystal
lographic axes. The position of a sample with re-

! 
FIG. 2. Recordings of the logarithmic de

rivative of the reactive component of the 
surface impedance of indium as a function 
of the reciprocal of the magnetic field. The 
sample and field orientation are given at the 
top of the figure. Two series of c.r. are de
noted by A and {3'; the subscripts indicate 
the order of the c.r. In the intervals between 
neighboring f3' c.r., the amplification of the 
system was increased by a factor of 15 be
fore the next recording. 

spect to the poles of the electromagnet was deter
mined, to within ±5', from the disappearance of the 
modulation signal found separately for two mutually 
perpendicular coils fixed to the sample support in 
such a way that the axis of one coil was perpen
dicular, and the other parallel, to the surface of 
the sample. 

The sample temperature was identical with the 
temperature of the helium bath and, as the helium 
level in the cryostat fell during experiments last
ing 4-5 hours, it decreased from 1. 8 to 1. 5o K. 
The lowering of the temperature from 4.2 to 1.5 o K 
increased the c.r. amplitude by a factor of 8-10. 

The direct result of the experiments was the 
recording of the dependence of the logarithmic 
derivative of the reactive component of the surface 
impedance of indium on the reciprocal of the mag
netic field intensity, which was measured by means 
of a Hall probe and calibrated with a nuclear mag
netometer. A typical recording of the c.r. spectra 
is given in Fig. 2. It shows clearly the resonances 
with two periods differing by a factor of almost 
six. The period .::lH-1 corresponds to an effective 
mass J.l., calculated from the formula [ 6• 81 

1.1. = m* /me= H EPR I !!.H-1 = e I meccuM-1• (1) 

The anisotropy of the effective masses, found 
by means of this formula for all the principal crys
tallographic planes, is shown in Figs. 3-7, as well 
as in Figs. 11 and 12. The good agreement between 
the results of the measurements carried out on 
different samples is illustrated on Fig. 7, which 
gives the effective masses obtained in experiments 
on two samples. Figure 4 also gives the values of 
the effective masses measured for two samples 
which differed considerably in their crystallo
graphic orientations, as given in Table I. The in-
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FIG. 3. Anisotropy of the effective mass of holes 
in indium in the (OlO) plane. Sample Inl. The dashed 
curve represents the effective mass A, calculated us
ing the 1-0PW model and multiplied by the coefficient 
k given in Table IV (see below). 

FIG. 4. Anisotropy of the effective masses of holes and 
electrons at a limiting point Oe on the electron Fermi sur
face of indium in the (110) plane. The points refer to the 
masses measured in samples Inii (e) and IniV (o). The 
dashed curve has the same meaning as in Fig. 3. 

fluence of a small change in the sample orientation 
on the effective mass anisotropy helped in the in
terpretation of the experimental results, as will 
be shown below. 

It has been shown earlier[ 6• 81 that the carriers 
whose effective masses are larger than 0.8-0.9 re
fer to the hole Fermi surface in the second zone 
and the carriers of lower masses refer to the 
electron Fermi surface in the third zone. In ac
cordance with this distinction, we shall consider 
separately the respective results. 

HOLE FERMI SURFACE OF INDIUM IN THE 
SECOND ZONE 

Measurements of the Effective Hole Masses 

Figures 3-7 show the anisotropy of the effec
tive carrier masses for the second-zone Fermi 
surface (with the exception of masses denoted by 
Oe)· Some of the data on the strongest lines in the 
(OlO) and (001) planes have already been reported 
in [ 61 • The results given in Fig. 3 were obtained 
for a sample with a more precise crystallographic 
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FIG. 5. Anisotropy of the effective masses of holes and 
electrons at a limiting point Oe on the electron Fermi surface 
in indium in the (lll) plane. Sample InV. 

orientation of its surface and, therefore, some ef
fective masses (for example, for H II [001]) were 
found more accurately. 

As shown before, [ 61 the shapes of the hole 
Fermi surfaces of indium (see below in Fig. 10) 
and aluminum[ 101 are very similar. The only dif
ference is a slight compression of the Fermi sur
face of indium along the tetragonal [ 00 1] axis di
rection, by about ~ 16% according to the 1-0PW 
model (the model was developed for a tetragonal 
face-centered crystal lattice with the constants 
a= 4.58A, c/a = 1.078. This made it possible to 
identify the c.r. using the calculations of the ef
fective hole mass anisotropy of aluminum, carried 
out by Naberezhny1 and Tolstoluzhskil. [ 131 The ef
fective masses of carriers in indium are denoted 
in Figs. 3-7 by the same symbols as were used in 
Fig. 2 in [ 131 to denote the calculated effective 
masses in aluminum, which had similar anisotropy. 
We used, of course, other characteristic proper
ties to assign the c.r. to given orbits on the hole 
surface; among these properties were, for exam
ple, the dependence of the c.r. amplitude on the 
polarization of the high-frequency currents J and 
on the inclination of the magnetic field to the sur
face of the sample, etc., which are discussed in 
detail later. 

Central Hole Orbits 

In all the investigated planes we observed an 
intense c.r. A for the central cross section of the 

FIG. 6. Anisotropy of the effective mass of holes in indium 
in the (Oll) plane. Sample InVI. The dashed curve has the 
same meaning as in Fig. 3. 

Fermi surface (see Fig. 10 below), exhibiting a 
very characteristic effective mass anisotropy near 
the crystallographic axes [100] and [001] (Figs. 3 
and 7). The amplitude of this c.r. was maximal 
for H 1 J and vanished for H II J. As a rule, it 
depended weakly on the inclination of the magnetic 
field to the surface of the sample. When the mag
netic field waR rotated, the orbit A crossed singu
larities (vertices) W and W' of the hole surface 
(Figs. 7 and 10) where the intensity of the c. r. A 
decreased so suddenly that it disappeared in the 
noise level, with the exception of the H 11[001] case. 
In the latter case, the c.r. amplitude was much 
weaker and very sensitive to the inclination of the 
magnetic field to the surface of the sample (Fig. 5 
in [ 61). This characteristic influence of the singu
larities W and W' of the hole surface on the c.r. 
A amplitude was well confirmed by a comparison 
of the angular intervals given in Table II, which 
showed that the c.r. A was observed with the in
tervals predicted by the 1-0PW model (see Fig. 10 
below). 

Thus, in spite of the fact that the hole Fermi 
surface of indium was closed, [ 41 the c. r. A along 
the central section did not remain continuous when 
the magnetic field was rotated in any crystallo
graphic plane. Figures 3 and 5-7 show clearly 
that in some angular intervals, between the direc
tions corresponding to the singularities W and W', 
the effective mass A vanished. This was be-
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[OlD] 

cause[6 1 the hole orbits had fairly acute "angles" 
(Fig. 7 in [61 ). When the "angle" of an orbit lay in 
the skin layer, the duration of the interaction of the 
electromagnetic field with a hole decreased so that 
the c. r. amplitude fell or disappeared completely in 
the noise background. Therefore, for example, the 
c.r. A was not observed for H II [110) in the (001) 
plane, but it was seen clearly for ~he same direc
tion of the magnetic field in the (111) plane (Fig. 4). 
This can be seen clearly by a comparison of Fig. 1 
with Fig. 2 in [ 61 • Another example is the obser
vation of the c.r.:. A for H11[001) in the (OlO) plane 
but not in the (110) plane (Figs. 3 and 4). 

The influence of the shape of the orbit on the 
c.r. amplitude did not make it possible to investi
gate the effective mass anisotropy in some planes 
using only one sample. However, this difficulty 
could be overcome by investigating a series of 
samples selected so that their surface planes in
cluded the necessary crystallographic directions 
and the investigated c.r. amplitude had the optimal 
value. This approach was used, for example, to 
determine the anisotropy of the effective mass A 
in the (001) plane near the [110) axis (Fig. 7), us
ing samples Inii and IniV, which differed slightly 
in their orientations (Table I). We then found that 
the rotation of the magnetic field by 6 o from the 
[ 110) axis in the (001) plane, which was orthogonal 
to the plane in Fig. 4, increased the effective mass 
A by ~21o. in agreement with the 1-0PW model 
calculations. Such experiments helped in the in
terpretation of the experimental results. 

FIG. 7. Anisotropy of the effective mass of holes in 
indium in the (001) plane and the extremal dimensions 
of the central orbit A along a direction perpendicular to 
the magnetic field and to the normal at the surface of a 
sample. The points represent the following samples: 
•-sampleusedin[•], o and ¢'-InVII, D-lnll, •-InlV. 
The continuous thick lines are: BR- the boundaries of 
the Brillouin zone; X- a cross section of the hole sur
face of the 1-0PW model. The dashed curve has the 
same meaning as in Fig. 3. 

Noncentral hole orbits 

The polar diagrams of Figs. 3-7 include sev
eral plots of the effective masses for the c.r. 
along noncentral cross sections of the hole Fermi 
surface. As mentioned earlier, they were identi
fied by a comparison with the calculations[ 131 for 
aluminum. In this procedure, the angular intervals 
in which the noncentral c.r. was observed had to 
be close to the calculated values (Table II) and the 
ratios of the various effective masses had to be 
approximately the same as the ratios of the corre
sponding calculated values. We were unable to 
identi~y by this procedu!:e the c.r. Y, observed in 
the (110) (Fig. 3) and (111) (Fig. 5) planes; it was 
not clear to which orbit on the Fermi surface this 
c.r. belonged, It should be mentioned that the angu
lar interval in which the c. r. Y was observed in 
both planes practically coincided with the interval 
of the existence of the y line in the size effect. [ 31 

The diagrams of Figs. 3, 4, and 6 include plots 
of the effective masses denoted by the symbol Oh, 
which refers to the c. r. at elliptical special points 
of the hole Fermi surface. [ 81 The corresponding 
orbits obviously lay on "caps" of the hole surface 
(cf. Fig. 10) for H II [001) and H II [111). In the lat
ter case, the c.r. was strongest; c.r. of the order 
n = 1-26 were observed, corresponding to an ef
fective mass fJ. = 1.605 ± 0.005, which was almost 
isotropic _over a fa~rly wide range of angles in both 
planes (110) and (011} (Figs. 4 and 6). Thus, this 
part of the hole surface, which was furthest from 
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Table II 

"' .... Calculation using 1-0PW model Experi• 
"'s:: 0 ment 
"' 0 Q)..: o·'" Plane .. ~ o.· 
u~ pu Range of existence of orbit I Interval, JIHTepBaJI, 

"' deg apaa 

A I (OIO) iW><J:H, 
A (OIO) 24°><J:H, 
A (HO) 32•><J:H, 

~ A (HO) 23.><J:H, 
s:: A (Hi) 22.><J:H, 
Q) A (Hi) go• ;;> <J: H, u A (011) 30• > <): H, 

A (OU) 16" > <): H, 
A (001) 28• > <): H, 

M (010) 8• ><J:H, 
~ D (OIO) 51 • > <): H, 
c: F (OIO) 35• > <): H, 
Q) Q (HO) 32• > <): H, u s:: N (HO) 20• > <): H, 
0 z Q (011) 32.><J:H, 

N (OU) 20• > <): H, 
F (001) 35• > <): H, 

all the ribs, was distorted least and could be con
sidered to be a part of a Fermi sphere. 

The effective mass, corresponding to the c.r. 
at an elliptic limit point, is [ 14 J 

(2) 

For a Fermi sphere of radius Pc, the Gaussian 
curvature of the surface is K = 1/p~ and the ve
locity is VF = v c , so that 

j.t = m• I me= (pc i Vc) I me= me I me, (3) 

where me is the hole mass whose experimental 
value is 1.6me. The hole velocity is vc = 1.09 
x 108 em/sec (the subscript "c" will be used al
ways to denote values referring to the 1-0PW 
model, which is constructed using Fermi 
spheres[ 10 J ). 

The difference between the free-electron mass 
and the mass of carriers in a metal has been 
found previously for lead, [ 15 J aluminum, [13 , 16 J and 
other metals; it is due to the existence of the 
electron-phonon interaction. 

Principal dimensions of the hole surface 

The c.r. cutoff is one of the most accurate 
methods of determining the dimensions of the 
Fermi surface. In [6 J we reported a determina
tion of the cutoff of the c.r. A in the central cross 
section of the hole surface, when the magnetic 
field direction was close to the [100] axis in the 
(OlO) plane (Figs. 8 and 9 in [ 6J ). In the present 
investigation, these experiments were extended to 
thinner samples Iniii and In VII (Table I). 

A recording of the cutoff of the c.r. A in sam
ple InVII is shown in Fig. 8. To determine exactly 

[100] >O• 31 3'> 
[001J > o· 24 26 
[001J > o· 32 29 
[110J ;;> o• 23 17 
[110J ;;> o· 22 16 
[110] >43° 47 44 
[tOOJ > o· 30 35 
[0111 ;;> o· 16 15 
[100J > o· 28 23 

[001J ;;> o· I 8 7 
[001] > 39° 12 10 
[001] > 15° 20 23 
[110] > 5° 27 25 
[001] > 5° 15 14 

24 [011] > 5° 27 
[100] > 5° 15 10 
[100] > 15° 20 13 

the cutoff field Hco• we were able to use the fol
lowing characteristic properties of the c.r. A. As 
mentioned earlier, the effective mass A increased 
rapidly as the magnetic field direction approached 
the [100] axis (Fig. 7). Thus, in the angular inter
val 5•:::: 1: H, [100]:::: 8° (Fig. 8), the increase was 

I tlX 
x tlll 

I 

4.H,[I/JU} ( U/11) 

X/ 

z 
FIG. 8. Recording of the c.r. cutoff for the hole Fermi sur

face of indium. The orientation of the surface of a sample 
and the field are given (for each curve) in the figure. A 
is the c.r. on the hole surface, and {3', {3" are the c.r. on 
the electron surface. The subscripts indicate the order of the 
resonance. The amplification of the circuit was doubled for 
each curve (going down). The dashed line shows the cutoff 
field Hco' and the accuracy of its measurement is indicated 
by a segment intersecting the dashed line. 
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Type Magnetic Pmax/(h/a) Pmin/(h/a 

ofc.r. Plane field 
present study I direction red•] ref. [•] 

A (001) <tH, [100]=7° 0. 915±0.015 0.93±0.02 0.88 
A (010) <tH, [001]=20° 0.855±0.015 * 0.86±0.02 0.83 
A· (HO) H II [110] 0, 780±0.010 0.80±0.015 0.75 
Q (HO) <tH, [110] =zoo 0.685±0:010 - -

*Data from[•]. 

~ 5%, but the dimension of the orbit A did not 
change: according to the 1-0PW model, the maxi
mum change in this angular range should be ~ 1%. 
Consequently, we were able to follow the various 
phases of the disappearance of the cutoff c.r. (for 
example, c.r. A19 in Fig. 8) in recordings of the 
c.r. spectra characterized by small angles of rota
tion of the field H. The accuracy of the determina
tion of the cutoff field was higher for such a series 
of recordings and, in our case, amounted to ~ 2% 
(the probable error is shown by a segment in 
Fig. 8). This method for the exact determination 
of the cutoff field was similar to that used in [!Zl, 

where the c.r. cutoff was shifted by a small 
change in the electromagnetic field frequency. 
From the value of Hco and the thickness D of a 
sample, we could calculate the external dimen
sions of the orbit in the momentum space using 
the formula:uz, SJ 

p = eHc0 D / 2c. (4) 

The upper part of Fig. 7 shows the anisotropy 
of the extremal dimensions of the orbit A calcu
lated using formula (4). The dashed curve in Fig. 8 
represents the central cross section of the hole 
surface (1-0PW model) for H II [100] and the con
tinuous curve X shows the projection of the ribs 
on this surface onto the (001) plane. The fact that, 
over the whole range of angles ~ H, [ 100] ~ 5-20 o, 
the measured values of the dimensions were less 
than the values given by the 1-0PW model, indi
cated that the ribs on the hole surface were 
rounded and the cusp near the point W was fairly 
smooth. 

Table III lists all the dimensions determined by 
the c.r. cutoff method for indium. According to the 
1-0PW model, the dimension p/(h/a), determined 
for 1: H, [001] = 20 o, should be larger by a factor 
of cos 20 o than the dimension found for H II [ 110 ]. 
We can easily show that the values (0.855 ± 0.01) 
cos 20°= 0.80 ± 0.01 and 0.78 ± 0.01 do indeed co
incide, within the limits of the errors in the sam
ple orientation. 

As expected, in the tetragonal lattice of indium, 
the dimensions of the hole surface are different 

along the [001] and [100] axes: the former is 
0.78(h/a), while the latter is 0.915(h/a) cos 7° 
= 0.91(h/a) (Table III). The ratio of these dimen
sions, which is 0. 86 ± 0. 02, is almost identical 
with the value [2(h/c)- Pcl/[2(h/a)- Pel = 0.84, 
which follows from the 1-0PW model. 

Table III gives the dimensions of the orbit cor
responding to a noncentral c.r. Q. Information on 
the dimensions of the noncentral orbits is very im
portant for the determination of their positions on 
the Fermi surface. It is then possible to calculate 
the value of the effective mass directly from the 
model without finding the extremum of this mass 
along the projection of PH onto the direction of the 
magnetic field H. For this reason, the effective 
mass Q, is the only one of the masses correspond
ing to the noncentral orbits to be given in Table IV. 

Table III includes, for comparison, the data ob
tained by the size effect method. [ 3J The results 
obtained by the two methods agree within the limits 
of the experimental error; however, Table III 
shows a small systematic difference between the 
results. The main cause of the difference was that, 
in the experiments of Gantmakher and Krylov[ 31 

carried at 3 Me, the depth of the skin layer was an 
order of magnitude greater than the depth for 
18.7 Gc. Consequently, the range of fields in which 
the c.r. cutoff took place was less than the corre
sponding range (i.e., the line width) in the size ef
fect. For the same reason (different depths of the 
skin layer), the numbers of electrons contributing 
to the two effects differed strongly. In the c. r. 
case, the number of these electrons was less and, 
consequently, the effect was weaker, which re
stricted the possibility of its observation. Thus, 
the c.r. cutoff method gave more accurate values 
of the cutoff field than the size effect but the for
mer could be applied only over a narrow range of 
experimental conditions. 

The experiments on the c. r. cutoff gave the fol
lowing results. Using these results, we were able 
to compare such different characteristics of the 
investigated orbit as the effective mass and the 
external dimension; this made it possible to de
termine the average velocity of carriers in the 
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orbit. [ sJ In the case of the cutoff of the noncen
tral c.r., the measurements of the extremal orbit 
dimension made it possible to find the orbit posi
tion on the Fermi surface. Moreover, the c. r. 
spectrum in fields less than the cutoff field was 
simpler, which made it easier to interpret the 
spectrum. 

The c.r. cutoff and the size effect[ 3J can be 
used only to determine the maximum dimension of 
the orbit, extremal in respect of PH· Nonconvex 
Fermi surfaces, such as the hole surface of in
dium, have minimal dimensions of the orbits, ex
tremal in respect of PH, which can be measured 
by the ultrasonic absorption method[ 1J (Table III). 
The systematic difference between Rayne's re
sults[ 1 J and those reported here and in Gantmakher 
and Krylov's paper,[ 3J shows that, in spite of the 
smoothing of the ribs of the hole surface, the lat
ter remains nonconvex. 

Calculation of the effective masses and velocities 
of carriers 

As shown in [ 15], the calculation of the effective 
mass 

m* = ~ ~ dl/vF.l.. 
2Jt 

(5) 

using the 1-0PW model reduces to the determina
tion of the sum of the angular dimensions of the 
arcs of which the orbit is made up. Then, the ve
locity VF over the whole Fermi surface is as
sumed to be the same and equal to 

Vp = Vc = Pc I me, (6) 

where me is the mass of a carrier moving at a 
velocity v c on a Fermi sphere of radius Pc· On 
the ribs, which are located at intersections of the 
Fermi spheres and consequently lie in the Bril
louin planes, the velocity v c remains indetermi
nate. It can be calculated by the 2-0PW model. If 
g/h is the reciprocal lattice vector, perpendicular 
to a Brillouin plane, and 

V g = ~ V (r) ~rfhd3r 

is the Fourier component of the lattice potential, 
the relationship between the energy and momentum 
[according to formula (11.13) in [ 17 J] is given by 
the expression 

2mce = g~ /4 + P 1_ 2 + P112 + [g2Prr2 + (2mc V g) 2] •;,, (7) 

where PII and p 1 are the components of the mo
mentum parallel and perpendicular to the vector g, 
measured from the point of intersection of the vec
tor g with the Brillouin plane. Using Eq. (7), we 
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FIG. 9a. Sections by the (1f0) plane in the 1-0PW model, 
shown as a continuous curve; sections of the hole surface in 
the 2-0PW model and of the electron surface in the 3-0PW 
model (plotted approximately) for the potentials 1 v.ul = o.o1 
and V002 = - 0.055, shown dashed. B represent the lines of 
intersection of the Brillouin zone boundaries with the plane of 
the figure (1f0). 

FIG. 9b. Qualitative nature of the anisotropy of the effective 
mass A, calculated from the 2-902 model for various potentials 

VJ~; < VJ~; < VJ~J for the rot:jtion of the field by an angle cp 
from the [001] axis. 

find the corresponding components of the carrier 
velocity v: 

V[j = {)ej ap[i = (1; mc)Prr{1 + g2 [g2Prr2 + (2mc Vg)2]-•t,}, 

(8) 

which assume the following form for a rib on the 
Fermi surface1> (p 11 = 0, EF =If /2mc), i.e., under 
the Bragg reflection conditions: 

-;,[[=0, 

Figure 9a shows the section, by the (110) plane, 
of a rib of the hole surface of indium drawn in ac
cordance with the 1-0PW model, the rib being 
formed by the intersection of two Fermi spheres 
whose centers have the coordinates (1, 1, 1) and 
(1, 1, -1). The same figure shows the section of 
a rib, whose shape is given by Eq. (7), in accord-

!)Strictly speaking, EF should be modified to: 
EF = p~/2mc + V0 , in order to make the volume of the new 
model equal to the volume of the 1-0PW model. However, 
since usually V0 < V g (for example, for aluminum 
V0 "' 0.2V11 , ["]) and the accuracy of the determination of 
the lattice potential in the present investigation was not 
very high ("'20%), we always assumed that V0 = 0. 
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ance with the 2-0PW model; the lower (minus) 
sign of the square root in Fig. 7 and g = 2h/c were 
used. The velocity v at the point s' in Fig. 9a is 
given by Eq. (9), in which the lower sign in front of 
V = V002 was used. When V002 - 0, then s'- s, and 
the Fermi surface of the 2 -OPW model trans
forms smoothly into the Fermi surface of the 
1-0PW model. We can then assume that 

~c = lim ; = {1/mc) [Pc2 - (hjc) 2]'1• = 0.59 Vc. (10) 
Yooz-+-0 

This result obtained for the point s in the 1-0PW 
model (Fig. 9a), is valid for all the ribs in the 
Fermi surface model and, therefore, we shall now 
assume that the velocity on the ribs of the 1-0PW 
model lies in the Brillouin plane and its value is 
equal to the projection of v c onto this plane. 

It is difficult to calculate the effective mass 
from the 2-0PW model using formulas (7) and (8) 
directly, because elliptical integrals are obtained 
from the integration of Eq. (5). However, it is pos
sible to determine approximately the corrections 
to the effective mass calculated from the 1-0PW 
model. Obviously, the main contribution to a 
change in the integral (5) is made by those seg
ments of the orbit on the Fermi surface, which 
are near the ribs of this surface. In this case, 
when the plane of the orbit includes the vector g 
and is therefore orthogonal to the ribs, the effec
tive mass decreases in the segment of the orbit 
which includes a rib, by an amount 

which is obtained by an approximate integration 
of (5), using Eqs. (7) and (8). The estimate given 
in Eq. (11) is valid if 2mciVgl « P6- g2/4 and the 
distance to the nearest rib on the Fermi surface is 
greater than 2mc V g/g. Thus, the correction t:.J;. 
depends quadratically on the value of the potential 
V g and is usually small. For example, if we as
sume that V002 = 0.055(h/a)2/2mc and V111 
= 0. 07 (h/a)2 /2mc, the reduction in the effective 
mass for the central hole orbit and H II [110], rep
resents only t:.J;. = 0.014, i.e., 1.9%. 

For the orbits whose planes coincide with a 
Brillouin plane or are close to such a plane, ~11 
depends linearly on V g; in such cases, the reduc
tion in the effective mass is due to a reduction in 
the orbit perimeter. For example, if Voo2 = 

= 0.055(h/a)2/2mc, the perimeter of the central 
orbit A on the hole surface for H II [001] de
creases by 3.8% and, consequently, ~JJ. IJJ. = 6.5%. 
As the plane of an orbit deviates further from a 
Brillouin plane, the difference between the effec
tive masses obtained from the two models de-

creases to a minimum. If the magnetic field direc
tion makes, with the [001] axis, an angle larger 
than 

(;) 
2mc I Voo? 12 (h/c) T,.(i) 

({!;::::::: · --------::::::: 2mcl Voo2l/1.5(h/a)2, 
i2(h/a)- [p 02 - (h/c) 2}';, (l2) 

then the hole orbit A passes along parts of the 
surface which are almost undistorted by the pres
ence of a lattice potential (Fig. 9a). Therefore, 
the nature of the anisotropy of the effective mass 
A, has qualitatively the form shown in Fig. 9b, for 

different values of the potential V~~~. 
From formulas (1) and (5), it follows that the 

effective mass is proportional to the period of 
revolution of a carrier in an orbit. Therefore, if 
the velocity lies in the plane of an orbit at any 
point of the orbit (VF 1 = VF) and the orbit period 
n is known, then we can determine, directly from 
the value of the effective mass, the velocity vF 
averaged over the orbit: 

(13) 

We can also find vF when, in some parts of the 
orbit, the direction of VF makes an angle with the 
plane of the orbit, the angle being known if the 
shape of the Fermi surface is known. From the 
results reported in [ 3• sJ and in the present paper, 
it follows that the 1-0PW model is sufficiently 
good approximation for the hole surface of indium. 
This model is acceptable because, as shown above, 
there is only a slight difference between the effec
tive masses calculated using this model and the 
2-0PW model, which is closer in shape and dimen
sions to the real Fermi surface. 

We shall carry out calculations for a Fermi 
surface whose shape and dimensions coincide with 
the 1-0PW model values, but for which the veloc
ities at various points of the surface are different. 
The reciprocal of the velocity, averaged out sep
arately for each of the arcs Ln of which the orbit 
is composed, given by 

(14) 

A second averaging Vffn carried out over all the 
arcs Ln having the angular dimensions CfJn, gives 

VFn-1 = ( L; VFn-1Un({!n) I L; ({!n, (15) 
n n 

where un cf Vcn/vc, if an arc Ln coincides with a 
rib on the surface or un = 1 in the remaining 
cases. Then, using formulas (5) and (6), we can 
easily show that the measured effective mass f.1 is 
related to f.1 c = me/me by the expression 
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Table IV 

Effective 
mass* 

k = IJ.IP.c 
- .. 

Magnetic field direction 

I 
vFXlO , Type of c.r. 

"' !Joe em/sec 

H II [111] 1,60 1.60 1.00 1.09 oh at limiting 
point 

H II [110] 1.17 1,20 0,98 1.11 ) 
Hll [011] L34 1.35 o:99 1.10 
HI [111] 1.54 1.58 0.97 1,12 ~ A 

H ~[112] 1.80 -1.86 0,97 t:t3 J 
9:: H, [11 I= 20°, (HO) 1~43 1.44 0,99 t;to Q, noncentral 

5° .;;;; 9:: H1 [100] .;;;; 20°, (001) - - 1,00 1,09 
5°.;;;; 9:: H, [100].;;;; 25°, (OIO) - - 1.06 Lo3 

too.;;;; 9:: H, [100].;;;; 30°, (OH) - - 0.91 1.20 A 
so.;;;; 9:H, [001].;;;; 25°, (110) - - 0.98 1.11 
so.;;;; 9:: H, [001].;;;; 25°, (OfO) - - 1.01 1;08 

2.29 0,95 - (3. (on electron 0;203 0,99 -H II [110] 0.202 
H II [001] \2;17 

H II [110] o:2o2 o: 141** 1,43 0.76 } surface) 

*Here, p. is the experimental value and p. is the 1-0PW model value. 
**Determined from the data in[']. c 

(16) 

where the notation VF = (vF.t)-1 is used. Usually, 
the difference between the experimental and calcu
lated values of the effective masses is given by 
the coefficient 

k = f.L I f.Lc = Vc I VF, 

which is equal to the reciprocal of the orbit
averaged relative Fermi velocity. 

(17) 

Comparison of the results of measurements and 
calculations for the hole orbits 

Table IV gives the values of the effective masses 
11-c and J1. for the c.r. A and Q, both measured ex
perimentally and calculated from the 1-0PW model, 
in which it was assumed that me = 1.6me and 
vc = 1.09 x 108 em/sec. Figures 3, 4, 6, and 7 
show dashed the 11-c mass anisotropy near the 
axes [001] and [100]. To make the calculated 
curve coincide with the experimental data for 1 H, 
[ 00 1] = 10 o and 1 H, [ 100] = 10 °, the calculated 
values were multiplied by a coefficient k = Ji./Ji.c, 
which is also given in Table IV. We can see that 
all the experimental values agree to within 6% with 
the values calculated from the 1-0PW model. This 
agreement can be considered as proving that the 
mass me is within the limits (1. 6 ± 0.1)me, pro
vided the shapes of the real Fermi surface and of 
the 1-0PW model are identical. On the other hand, 
the observed deviations of the measured effective 
masses from the values calculated using the 
1-0PW model, can be explained by means of the 
2-0PW model in which it is assumed that me 

= 1. 6mc and an effective lattice potential is deter
mined. 

In the present investigation, we were able to 
measure the effective mass corresponding to the 
central orbit A, which passed along the ribs of the 
hole surface of indium for H II [001] (Fig. 10). This 
orbit is shown dashed in Fig. 7 of [ 61 and it con
sists of arcs representing .''square caps'' and 
ribs. The velocity along the caps is vc and ap
proximately isotropic. This follows, for example, 
from the fact that k = 0.98 for the central hole or
bit if H II [110] (Table IV) and that it varies only 
sl~ghtly when the magnetic field is rotated in the 
(110) plane (Fig. 4). Using Eqs. (15) and (17), we 
can find the average value of the velocity on a rib 
of the hole surface (Fig. 9a), which is 

(vF-1)-1 = Vc·0,67 = 0,73·108 em/sec. 

This value differs considerably from that expected 
from the 1-0PW model [Eq. (10)]. This difference 
can be explained by the 2-0PW model. In fact, if 
the magnetic field direction approaches the [001] 
axis, k decreases and, consequently, the difference 
between the two models increases. This is partic
ularly marked in the angular range ±5o on both 
sides of the [001] axis in the (OlO) plane (Fig. 3 
and Table III). The Fourier component of the lat
tice potential is found from the difference All= Jl.c 
-11-, for H II [001] (Figs. 3 and 9b), using Eqs. (5), 
(7), and (9): 

IV002I = (0.055±0.005)(hla) 2 12mc 

and similarly the velocity of holes on a rib is 
found to be 

~F = 0.64, Vc = 0.7·108 em/sec. 
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The agreement between this value of the veloc
ity and that found above indicates that the 2-0PW 
model describes well the shapes of the ribs on the 
hole surface of indium and the velocity of carriers 
on this surface. 

Another rough estimate of the potential V002 can 
be obtained from the angle between the direction of 
the field and the [001] axis at which the difference 
between the 1-0PW calculated values and the ex
perimental values of the effective mass J-1- (Figs. 3 
and 7) becomes noticeable. From Eq. (12), it fol
lows that 

I Voozl """"· 0.14(h I a) 2 I 2mc. 

The effective mass corresponding to the orbit 
A for H 11[110] (Fig. 10) is less than the value cal
culated from the 1-0PW model by an amount flJ-t 
= J-tc- J-t = 0.022. According to the 2-0PW model 
and Eq. (11), the reduction in the effective mass is 
flJJ-1 = 0.005 for that part of the orbit which passes 
along the ribs shown in Fig. 9a. Therefore, the 
difference flJJ- 2 = flJJ- - flJJ- 1 corresponds to that 
part of the orbit which intersects other ribs, such 
as a rib R (Fig. 10), formed by the intersection 
of the Fermi spheres whose centers have the co
ordinates (0, 0, 2) and (1, 1, 1). The value of this 
difference determines, according to Eq. (11), the 
component of the potential 

I Vwl = (0;07 + 0.015) (hI a) 2 I 2mc. 

From the difference between the maximum dimen
sion of this orbit (Table III) and the value expected 
from the 1-0PW model, we can vind V111 inde
pendently 

I v111l = (o.o4 + o.oz) (hI a)2 I 2mc, 

which is in good agreement with the preceding ex
pression. 

The value of k for the orbit A when H II to 11] 
indicates that the Fourier component of the poten
tial V 2oo is small and does not affect, within the 
experimental accuracy the reduction in the effec
tive mass J-1- (Table IV), i.e., 

IVzool ~ 0.015(h,/a)2/2mc. 

Thus, the estimates of the Fourier components 
of the lattice potential, given above, allow us to 
understand why all the values of k given in Table 
IV for the orbits intersecting the ribs on the hole 
surface at large angles and passing far from the 
singularities W and W' (Fig. 10), are less than 
unity by 1-3%. The only exception is k = 1.06, but 
this value is known to be too high because of an 
error in the crystallographic orientation of the 
sample Iniii. On the other hand, when an orbit ap-

FIG. 10. Hole surface in the second zone, according to 
the 1-0PW model. U, K, W, and W' represent the symmetry 
points on the edges of the Brillouin zone according to Bouck
aert et aU 19] 

proaches the singularities W and W' on the hole 
surface, we find that k::::: 1.0 (Table IV). It is pos
sible that this departure from the 1-0PW model, 
not explained by the 2-0PW model, can be ac
counted for by the 4-0PW model, which gives 
more accurately the shape of the Fermi surface 
near the singularities W and W'. 

ELECTRON FERMI SURF ACE OF INDIUM ON 
THE THIRD ZONE 
The anisotropy of the effectiv~ electron mass 

in the crystallographic planes (010), (001), and 
( 1l1) was investigated in [ 61 • However, the re
sults for the last of these three planes were in
complete, because the experiments were carried 
out on an imperfect single crystal. Therefore, in 
the present investigation, we again studi~d the ani
sotropy of the effective masses in the (111) plane 
using the sample InV of correct crystallographic 
orientation (Table 1). Moreover, we investiga!ed 
the eff~ctive mass anisotropy in the planes (110) 
and (011). All the results are given in Figs. 11 
and 12. 

Tubes Forming the Electron Surface 

The set of effective masses {3' and {3" (Figs. 11 
and 12 in the present paper, and Fig. 3 in [6 1) cor
responds to two cylindrical surfaces, which are 
tubes elongated along the [110] and [1lO] axes. 
This follows from the plots of the effective masses 
{3' and {3" which are practically straight lines in 
their middle parts [Eq. (6) in [ 151 ], with minimum 
values for H II [100]. On the other hand, the {3 tubes 
have constrictions because the plots of the effective 
masses {3 differ considerably from straight lines 
when the field H is rotated away from the projec-
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[110] 
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tion of the [ 110] axis onto the plane of the sample. 
In indium, whose _tetragonal lattice has three 

symmetry planes (110), (110), and (001), as well as 
a fourfold axis [001], the Fermi surface can have 
only four types of tube, which cannot be made con
gruent by translation but are elongated along the 
[110] and [1l0] axes if they are intersected by the 
symmetry planes. In this case, a rotation by 180 o 

about the [001] axis and a reflection in the (001) 
plane make congruent the orbits on a pair of tubes 

FIG. 11. Anisotropy of the effective electron 
mass in indium. Symbols represent the masses 
measured by rotation of the field in two planes: 
X and o -(llO) (samples Inll and IniV, respec
tively); •-(Oll) (sample In VI). The directions of 
the axes, corresponding to these planes, and the 
planes themselves are shown in the figure by 
the same symbols. 

FIG. 12. Anisotropy of the effective electron mass in in
dium in the (lfl) plane. Sample InV. 

having parallel axes. Therefore, only two c.r. can 
be observed for two pairs of such tubes. This is 
confirmed by experiment. 

The foregoing conclusions about the shape of 
the tubes and their positions in the momentum 
space are in agreement with the 1-0PW model 
(Fig. 13), which consists of tubes f3 which become 
narrower at their ends and are elongated along 
[110] type axes ~nd intersected by the symmetry 
planes (001), (110), and (110). At the points W in 
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(100} 

the 1-0PW model, the tubes join thinner tubes a, 
elongated along axes of the lOll] type (Fig. 4a in 
[ 61 ). However, the present andprevious[ 3• 61 in
vestigations have not yielded any data supporting 
the existence of the a tubes. In the absence of a 
symmetry plane of the (0 11) type, the indium lat
tice need not have a cross section for H 11[011] 
which would be extremal in respect of the effective 
mass. It is possible that this is why the c.r. of the 
a tubes was not observed but quantum oscillations 
of the cross sections of the a tubes were reported 
in [ 21 

From the c.r. and size effect[ 31 investigations, 
it follows that the electron Fermi surface of in
dium in the third zone is topologically similar to a 
torus and consists of four f3 tubes joined end to 
end. The principal dimensions of such a surface 
were reported in [ 31 ; the value of the perimeter of 
the central orbit for H lllllO] makes it possible to 
determine the average electron velocity by means 
of formula (13). This velocity is found to be VF 
= 0. 76 x 108 em/sec (Table IV), i.e., it is almost 
equal to the velocity of holes along a rib on the 
hole surface. This result is in agreement with the 
observation that the carrier velocities near the 
boundary of a Brillouin zone should be less than 
they are away from this boundary. 

Noncentral electron orbits 

In [ 6], we drew your attention to the profile of 
the c.r. line f3 (Fig. 2 in [ 61 ), which could have 
been due to the superposition of two c. r. corre-_ 
sponding to similar effective masses. In the (111) 
plane (Fig. 12) for 1: H, l110] = 70-80°, the c.r. 
resolution was sufficiently good to investigate the 
dependence of the c. r. line on the inclination of the 
magnetic field to the surface of a sample (Fig. 14). 

FIG. 13. Electron Fermi surface of indium in the third 
zone, plotted from the results of the present investigation 
and the paper[•]. The dashed curves represent the 1-0PW 
model. The {3', {3" , and 1] orbits are shown. U, X, and W 
represent the symmetry points (Fig. 10). 

It was found that the {3ft c. r., corresponding to a 
lighter mass, depended strongly on the inclination 
of the field and was therefore associated with a 
noncentral orbit. As the field was rotated away 
from the l110] axis, the {3~ c.r. became gradually 
stronger, while the {3' c.r. weakened (Fig. ~1). 

Obviously, this took place not only in the (111) 
plane but also in other planes. However, due to the 
insufficient resolution of the c.r. (<'iH-1 /H-1 = 1/ 20), 

only an irregularity was observed in the depend
ence of the c. r. position on the magnetic field di
rection lcf., for example, Fig. 3 in [ 61 or the 
graph of {3" for the (Ol1) plane when ~ H, l100] 
= 20-30 o in Fig. 10]. The existence of a noncentral 
c.r. [3ft corresponding to a smaller effective mass, 
provides additional evidence of the narrowing of 
the f3 tubes at their ends. 

Neck of tubes 

In the (1l1) plane, we observed first- and sec
ond-order c.r. of considerable amplitude, corre
sponding to the smallest effective mass 11 ob
served in indium (Fig. 12). Its value was 0.11 for 
1: H, lllO] = 20 o • The anisotropy of this effective 
mass indicates that indium has a tubular Fermi 
surface with an axis whose projection onto (111) 
plane makes an angle of 16 o ± 1 o with the direction 
l110] . Bearing in mind the electron surface model 
described above, we may conclude that the effec
tive mass 1J is associated with an orbit on a nar
row constriction at the end of a {3' tube close to 
the place where it joins another tube {3" (Fig. 13). 
The axis of this constriction (neck) makes a fairly 
large angle with the tube axis, which is parallel to 
l110]. For example, in aluminum, whose electron 
surface is also in the form of "square torus,,[ 18 • 

201 the axes of the necks make an angle of 20-25 o 



56 R. T. MINA and M. S. KHAIKIN 

FIG. 14. Recordings of the c.r. spectra 
{3' and {3~ for the {3 tubes of the electron 
surface for various angles of inclination 
of the field to the sample surface. The or
ientations of the surface and the field are 
given above the curves; the angles of in
clination are to the right of the curves. 

0 

with the direction [ 110] (the value of this angle 
was estimated from the anisotropy of the a-oscil
lations shown in Fig. 5c of [ 201 ). In indium, this 
angle, which lies in the (001) plane, can be easily 
determined from its projection onto the (1l1) 
plane: the required angle is equal to tan - 1 (cos 58.5 o 

• cot 16 °) = 29 o± 1°. This value is in good agree
ment with the shape of the electron surface 
(Fig. 13). 

The neck size can be estimated from the value 
of the angle between the axis of a {3 tube and the 
direction of the field H at which the {3 orbit en
ters the neck and becomes discontinuous. It is 
evident from Figs. 11 and 12 in the present com
munication and from Fig. 3 in [ 61 that, for various 
crystallographic planes, this angle lies within the 
range 6 o ± 2 °. Since the length of an edge of the 
Brillouin zone is 0.8(h/a), the perimeter of the 
neck is 

ITTJ = 0.8n tan(6'' + 2°) (hI a) = (0.25 ± 0.08) (hI a). 

Assuming that the electron velocity on the neck 
lies in the plane of the orbit, we can use formula 
(13) to estimate the electron velocity VFrj on the 
neck of a tube: 

VFT) I VFII = (ITT) I ITt~) 1111 I 11'1 = 0.9 ± 0.2; (18) 

here, n13 = 0.61(h/a), according to [ 31• This rough 
estimate shows that the velocity on the neck is ap
proximately the same as in the middle part of the 
tube. 

CONCLUSIONS 

The models of the Fermi surfaces of indium, 
aluminum, and lead, considered in the almost-free 
electron approximation, have much in common. [ 61 

The similarity of the Fermi surfaces of these 
metals was confirmed by the present investigation, 
since many effective masses detected in indium 
were found to be analogs of the corresponding 

masses in aluminum[ 13 • 161 and in lead Usl both in , 
respect of their anisotropy and the ratios of their 
values. 

The velocities of holes and electrons (Table IV) 
were found by comparing the measured values of 
the effective masses with the values calculated 
from the 1-0PW model of indium. In particular, 
the velocity of holes on a rib of the Fermi surface 
was found to be 0. 73 x 108 em/sec; the velocities 
of holes on remaining parts of the hole surface 
were considerably greater, for example, VF 
= 1.09 x 108 em/sec for H 11[111]. 

From the results of the present investigation, 
we may conclude that, with some exceptions, the 
anisotropy of the effective masses and of the ve
locities of carriers in indium is explained satis
factorily by the 1-0PW model, in which the car
rier mass is taken to be 1. 6me. The exceptions, 
which cannot be explained by the 1-0PW model, 
are the following experimental observations: 

a) the deviation of the anisotropy of the effec
tive mass A from the calculated value near the 
[100] (Fig. 6) and [001] (Fig. 3) axes; 

b) the small reduction in all the extremal di
mensions of the Fermi surface and of the effective 
masses compared with the values found from the 
model (Fig. 7, Tables III and IV); 

c) the absence of the cyclotron resonance for 
the tubes of the electron surface; 

d) a smaller electron velocity (by a factor of 
~ 1.4), compared with the hole velocity (Table IV); 

e) the Fermi surface area S being "'0.8 of the 
model surface Sc. This reduction factor was found 
as follows. The coefficient '}' of the linear term in 
the electronic specific heat is, as is known, [ 211 

proportional to the integral J ds/vF, taken over 
the whole Fermi surface S, and consequently 
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where VF ~v c/1. 6, according to our investigation. 
On the other hand, y for indium[ 7' 211 is 1.3 times 
less than the value calculated from the 1-0PW 
model. Consequently, S/Sc = 0.8. 

All these differences, found by comparing the 
experimental data with the 1-0PW model, can be 
eliminated by replacing it with another model, 
developed in the approximation of several OPW, 
for example, 2-0PW [differences a), b), and e)] 
or 3-0PW [differences c) and d)]. 

The validity of this conclusion in respect of dif
ferences a) and b) has been proved here earlier. 
A comparison with the 2-0PW model gave the fol
lowing Fourier components of the effective lattice 
potential: 

I Vm I = 0.07 ± 0,015, I v 0021 = o.o55 ± o.o1, 

I Vzool < 0.015 

[the values of the potential are given here, and 
later, in units of (h/a)2/2mc = 0. 329 Ry, E F 
= p~/2mc = 1.21]. 

Remarks on difference e) 

These components of the potential can be used 
to estimate approximately, within the limits of the 
accuracy of the 2-0PW model, the total area of 
the Fermi surface of indium S = 0.85Sc· This re
duction in the Fermi surface area in the 2-0PW 
model takes place in a strip near the ribs and, in 
the first approximation with respect to V g, it is 
given by 

Mg = 4nl2mcVgl [(pc2 - g2 / 4)'1•- Pc] /g. 

A similar result, S = 0. 9 3Sc, follows from the 
measurements of the anomalous skin effect. [ 221 

The values obtained are in agreement with the ex
periments on the cyclotron resonance and on the 
specific heat. 

The shape of the electron Fermi surface of in
dium, and the electron velocities far from the 
singularities W and W', should be compared with 
the 3-0PW model. [ 231 However, because complete 
calculations based on this model were not carried 
out in [ 231, the comparison given below will be 
made only in respect of certain details. 

Remarks on difference c) 

The problem of the existence of the a tubes in 
the electron surface of indium may be considered 
on the basis of the 3-0PW model. The difference 
between the Fermi and electron energies at a 
point K in the 1-0PW model (Fig. 10) amounts to 
0.11. The increase in the energy of the bottom of 

the band lying close to the point K is, according 
to the 3-0PW model, approximately equal to 
IV2oo +v21V111 1I = 0.10±0.03 if the components 
of the potential given above are substituted. This 
means that the a tubes in the 3-0PW model are 
either very small or do not exist at all. 

Remarks on difference d) 

The values of the effective mass {3', corre
sponding to the central orbit on the electron sur
face for H II [110], are practically identical for the 
1-0PW and 3-0PW models [the difference is 
~ 1%, according to Eq. (11)], and agree with ex
periment: 11. = 0.202 = 0.991.Lc· On the other hand, 
the smaller orbit per.imeter, [3 1 compared with the 
1-0PW model, causes a reduction in the electron 
velocity [Eq. (13)]. Consequently, to check whether 
the 3-0PW model explains correctly why the elec
tron velocities are lower than the hole velocities, 
we must find whether a calculation based on the 
3-0PW model gives an orbit perimeter agreeing 
with the experiments of Gantmakher and Krylov.[ 31 

We shall only calculate one dimension of a {3 tube 
in the (1lO) plane along the [110] direction (Fig. 9a) 
using the 3-0PW model. [ 231 The calculation gives 
0.22(h/a) for V002 < 0 or 0.19(h/a) for V002 > 0. 
The first of these values is identical with the result 
reported in [ 31 : (0.22 ± 0.01)(h/a). Thus, from this 
agreement of the calculation with experiment, we 
can additionally conclude that V002 < 0. 

The values of the components of the effective 
potential, determined in the present investigation, 
are in satisfactory agreement with the theory of 
the effective potential [ 241 which has only one pa
rameter {3 ; this parameter can be found experi
mentally. The best agreement between the experi
mental data and Harrison's theory[ 241 is obtained 
for {3 = 34 ± 2. In this case the calculation gives 

Vut = -0.10 + 0.01, Vo02 = -0.05 ± 0.01, 

V2oo = 0,003 ± 0.012. 

From the experiments on the electrical resistance 
of alloys of indium with other metals·, it follows 
that {3 = 31 ± 5. [ 251 Bearing in mind the possible 
error in the determination of {3, the agreement be
tween these values can be regarded as satisfac
tory. Recent calculations[ 261 of the effective po
tential are in poorer agreement with experiment: 

. t· . E (4) . [ 241 • an approx1ma 10n usmg q. m g1ves 
{3 = 42. 

The electrical resistance of liquid indium gives 
gives[2Tl the value IVgl = 0.085, averaged out 
over a certain range near g = 2Pc· This value is 
also in satisfactory agreement with the experi-
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mentally determined components of the lattice po
tential. 

In conclusion, we note that in the present inves
tigation the potentialities of the cyclotron reso
nance method of experimental investigation of the 
properties of carriers in a metal were used to 
measure the Fermi velocities and their anisotropy 
and to determine the components of the effective 
potential of the crystal lattice of the metal. 
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