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The mode locking process in a laser in the course of Q-switching is considered. It is shown that 
allowance for mode pulling by the Doppler line center reveals the existence of a minimum de
gree of modulation whereby synchronization is possible. The analysis of a two-mode laser can be 
reduced to the classical problem of synchronizing an oscillator by an external signal, which is 
solved by a successive simplification method. This method allows one to determine the mode 
locking range for any number of equidistant modes. Mode capture has been observed experimen
tally, the mode locking range is determined, and a qualitative agreement of experimental results 
with the theory under consideration is established. 

NoNLINEAR laser processes have recently been 
the subject of considerable attention. The nonlin
earity of the active medium under certain condi
tions causes mutual synchronization of laser 
modes. [1] The emission may also be synchronized 
by impressing an external signal upon the laser 
at oscillation frequency, [21 or by a parametric 
method which varies either the dielectric constant 
or resonator losses at the frequency of mode beats. 
The latter case was discussed by DiDomenico, [ 31 

who showed that mode locking occurs when reso
nator losses are modulated at a frequency equal to 
the mode beat frequency. In such a process, mode 
separation becomes equal to the modulation fre
quency and all beats have the same constant phase. 
The locked mode interference makes the laser 
emission pulsed. The case in which modulation 
frequency differs from the mode beat frequency 
has been discussed in [ 4, 51 • There, as in [ 31 , the 
nonlinear nature of amplification in the gas mix
ture was not considered; it was found that a de
crease in the detuning between the frequency of 
the modulated signal and the beat frequency led to 
an increase in the intensity of light generated by 
the laser. However, the assumption that gain is 
linear does not yield a stationary solution with 
zero detuning and does not permit determination 
of the mode locking range of the laser. The exper
iments [ 5• 61 on the oscillation intensity as a func
tion of the detuning are approximate and need to 
be refined. 

Q-switching at a frequency close to the mode 
beat frequency has a cumulative effect and consti
tutes an example of a resonant interaction with a 
system. Therefore, at small input losses, such a 

problem can be treated by the standard methods 
used in the study of oscillating systems subject to 
weak resonant signals. 

The purpose of this paper is an investigation of 
laser mode locking in the course of Q-switching, 
taking account of the nonlinear amplification of the 
gas mixture and mode pulling, as well as the de
termination of the mode locking range and com-
parison with experiment. 

DERIVATION OF EQUATIONS 

The field of each laser mode is represented by 
a plane wave propagating along the resonator axis; 
this is valid for a laser generating the fundamental 
mode. Q-switching is accomplished by varying the 
reflection coefficient of one of the mirrors (for ex
ample, by means of an electro-optical crystal 
placed at the mirror). The amplitude-modulated 
light reflection coefficient p can be conveniently 
represented, following DiDomenico, by 

11 

1 - a - ~m COS Wmt 1 ~ > P. ( 1) p- ~a pm· 
- 1 + a + ~m COS Wmt ' 

Here, 0! and f3m are the constant and variable 
losses and . wm is the modulation frequency. Let 
us consider the case were the modulation fre
quency differs little from the mode beat frequency: 

Q is the quality factor of the resonator. The case 
when wm ~ 2(wn- Wn_ 1 ), Wm R:J 3(wn- Wn -1), 
etc. is considered analogously, provided two, 
three, etc. groups of modes which do not interact 
with one another appear within the Doppler line. 
In each group, the modes are separated from one 
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another by a distance ~ wm and satisfy a condi
tion of the type (2). Expanding the field in the laser 
in terms of the resonator eigenfunction, we obtain 
an equation for the n-th mode: 

d2xn Q-1 dxn + 2 ___ 1 d2P +213mWn --+wn -- WnXn- 8 --
dt2 dt dt2 :rt 

{ 1 dXn-1 1 dxn+t \_ 
x cos wmt\n _ {dt + n + 1 ---;;u-s 

d2Pn 
X -a:tZ::::::: - Vn2Pn, Vn = Wn + ~n• (3) 

Here Pn is the polarization of the active medium 
of the laser, vn is the oscillation frequency, and 
E is the dielectric constant. 

The above equation is best studied by the method 
of slowly varying amplitudes. Let us assume that 
the field of the n-th mode satisfies the expression: 

Xn · En(t) sin(vnt+q>n(t)), (4) 

where En and <Pn are an amplitude and phase that 
vary slowly over one period. Polarization of the 
medium is represented by 

Pn = Pn<1>(t, Wn- ffi}cos(vnt + Qln) 

+ Pn<2>(t, ffin- w)sin(vnt + <pn), (5) 

w is the center of the Doppler line, and p~> and 
P~2 > are defined after Lamb. [ 11 The form of these 
functions is of no further interest; it is important 
merely that P~1 > ensure saturation of the gas
mixture gain. In the definition of P ~ > we confine 
ourselves to the first Lamb approximation; hence, 
P~2 > = 'Y(wn- w)En, where y(wn- w) is independ
ent of En. Consequently, oscillation-frequency 
pulling by the gain curve is taken into account, but 
mode interaction in the absence of modulation is 
not. 

Substituting (4) into (5) and (3) and using the 
standard procedure, we get 

En+ (wnQ-1 - cr(En))En = 13[En+1 cos <I>n 

+ En-1 COS <Dn-t], 

• [En-1 . (En+t En ) 
<I>n = -Xn + {I + 13. -p;;: sm <I>n-1 - ~ + En+t 

. En+2 . n. J X sm <l>n + -E SID "~'n+t , 
n+t 

'Xn = Vn (Pn<2>- P~~1) (eEn)-1, 

cr(En) = VnPn<1>(En) (eEn)-1, 
(6) 

where ~n = <Pn- <Pn+1 + (.::ln- .::ln+1 + 6)t is the 
relati~e phase, and {3 = wmf3m/27r. If the laser 
resonator excites n modes, the system (6) con
tains n amplitude and n- 1 phase equations. From 
the amplitude equation (6) it follows that if only 

the n-th mode is amplified in the laser, then the 
amplitudes of the remaining modes attenuate like 

K 
En±K/En F::l (/3m /0!) • 

Further analysis of the system (6) will be based 
on the successive simplification method developed 
by Khokhlov. r 71 The applicability of this method is 
based on the fact that a weak signal has a small 
effect on the amplitude of oscillations, so that the 
main parameters of the process are described by 
the phase equations. The amplitude and phase of 
the electric field of the n-th mode is represented 
as 

En = En° + !.ten (J.tt), <l>n = <l>n (t), (7) 

where E~ is the steady-state amplitude for {3 = 0, 
and JJ. is a parameter characterizing the small
ness of en: 

J.t::::::: (E~+1 +E!-1) (En°lffinQ-1- cr(En).lmax)-1. 

Using (7), we can represent (6) in the form 

<l>n = -xn + {I + 13 [Kn-1 sin <Dn-1 - (Kn - 1 + Kn) 

where Kn = En/En+l is not time dependent. 

(8) 

The expression for amplitude correction en is 
obtained from (6): 

en= ldcr/d!niEn'[Kn-1cos<I>n+Kn-1cos<I>n-tl. (9) 

The most complete analysis of (8) and (9) is 
possible in the two-mode case. The behavior of 
modes with indices n and n + 1 can be described 
by (8) and (9) if Kn-l and Kji~ 1 are set equal to 
zero: 

13 I d /dE I o Kn COS tl>n, 
C1 n+1 E n+1 

(10) 

The phase equation (11) coincides with the analo
gous equation obtained under the same assump
tions for the case of an oscillator synchronized by 
an external signal, and can be integrated by quad
ratures. 

Equation (11) is integrated separately in the re
gions I 611 < {3(Kji1 + Kn) and 1611 > {3 (Kii.1 + Kn) 
(see r 71• In the first case, (11) describes limiting 
motion of the phase to the stable state, when 

(12) 

The mode locking band of a two-mode laser is de-
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termiil.ed by 

(13) 

The stationary phase values lie within the range 
-1r /2 < <l>n < 1r /2. Therefore, according to (10), the 
mode amplitudes increase when the detuning o1 
decreases. Within a detuning range such that 
I otl > J3 (Kii1 + Kn), solution of (11) yields an oscil
lating phase of frequency ·"" o1 when the detuning is 
considerable. This corresponds to a simultaneous 
existence of mode beats with frequencies wm and 
Vn+1 - vn. It follows from (11) that the amplitudes 
en and en+1 vary in phase and consequently the 
average intensity of the laser should also vary with 
a frequency ""o1. 

The synchronization of a three-mode laser with 
frequencies Vn-to vn, and vn+t> is described by a 
system of two phase equations obtained from (8): 

<bn = tJ - xn + ~ [Kn-1 sin ll>n-1 - (Kn - 1 + Kn) sin ll>n], 

iDn-1 = tJ- Xn-1 + ~ [- (l(;(_t + Kn-1) sin ll>n-1 

+ K;/ sin ll>n], (14) 

This system cannot be integrated by quadratures, 
but permits a qualitative analysis in the phase 
plane. Setting Xn =sin <I>n and Xn-1 = sin <I>n-t> 
and dividing one equation in (14) by the other, we 
get 

dXn-1 

dXn-1 

I 2 -1 
)'1- Xn-1 [6- 'iGn + ~ (Kn-1Xn-1- (Kn + Kn) Xn)] 

)'1-,- Xn2 [6- 'iGn-1 + ~(- (K;;-:1 +Kn-1)Xn-1 + K-;;_1Xn)] 

(15) 

The phase diagrams of this equation are shown in 
Fig. 1 for the case when system (14) has a station
ary solution (Xn-1, Xn) determined by the equa
tions 

(16) 

IXn-d < 1, IXnl < 1, (17) 

X D (><) 
n, n-i = ( n, n-1 - bDn, n-t}/~D, (18) 

where D is the determinant of system (16), and 
Dn, n-1 are determinants whose columns contain
ing the coefficients of Xn, n-1 have been replaced 

FIG. 1. Relative phase diagram of a three-mode laser 
for the following parameter values: Kn = 1, Kn-• = 2, 
{T1(Kn - 0) =- 1, (T1(Kn-t - /J) = 0.2. 

by unit columns and Dh~ln- 1 are determinants in 
which the same columns have been replaced by 
columns containing the elements Kn, n-1. 

The mode locking range of the system is deter
mined by the condition, 

D (><) I n, n-1 ;DbDn, n-1 I = 1, (19) 

which is a consequence of (17) and (18). If the cen
ter of the Doppler line pulls in the modes so as to 
render 

<><> D n<"> "D I Dn -6 n I 1 I n-1- u n-1 I . 1 
D > or 6D > 

~ . 
for all values of o, then laser beats will not be 
synchronized for the given value of J3. 

(20) 

It follows from (18) that within the mode locking 
range the relative phases begin to differ already 
in the case of three modes and fail to coincide with 
the phase of the modulating signal; an exception is 
the case of Kn = Kn-1 = K, corresponding to a sym
metrical arrangement of modes in the Doppler 
line. The locking range is here determined by the 
condition 

(21) 

where Dm is the largest of the determinants 
Dn, n-1. If the detuning exceeds the locking range 
and inequalities (17) are not satisfied, the phase 
diagrams of Eq. (16) are closed curves describing 
synchronous oscillations of the phases <l>n, n-1· We 
can analyze the interaction of any number of modes 
in a similar manner. 

The expression for the locking range can be 
considerably simplified if IDh~h±1, n±2, .. ./PD I« 1. 
In this case, (21) is valid, wherein Dm is the 
largest of all Dn, n±1, n±z, ... · If, in addition, it is 
assumed that all mode amplitudes are equal, then 
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for 2n + 1 modes, for example, we obtain 

1<'~1 =2~/n(n+1). 

EXPERIMENTAL DETERMINATION OF THE 
MODE LOCKING RANGE 

(22) 

In the experiment described we used a He-Ne 
laser (71. = 0.63J,L, distance between mirrors 
,..., 163 em) which generated only longitudinal modes. 
Q-switching was accomplished by a KDP crystal 
placed at the flat mirror. The voltage was applied 
through ring electrodes along the z axis of the 
crystal (Fig. 2). An FM signal with a frequency of 
,..., 92 me and a fixed bias (not shown in Fig. 2) were 
applied to the signal; the maximum frequency de
viation amounted to "'100 kc. The same signal 
was delivered to a photodiode, where it was mixed 
with a signal at a mode beat frequency. The re
sulting frequency-difference signal was displayed 
on the screen of a two-beam oscilloscope; at the 
same time, the display showed the variation in 
laser emission intensity, as indicated by a photo
electron multiplier (upper beam). 

A typical oscilloscope trace is shown in Fig. 3 
(bottom). The absence of beats within a definite 
frequency interval indicates the locking of the 
mode beats. The magnitude of the locking range 
and the amplitudes of the beats located on both 
sides of the range depend upon the magnitude of 
the signal impressed on the crystal and upon the 
bias. Outside the locking range, the laser shows 
simultaneously mode beats at the frequencies 
"'wn- Wn-t and wm· Addition of these signals re
sults in the modulation of light intensity with a 
frequency "'6 (upper trace in Fig. 3). 

Without modulation or in the case of a large de
tuning, it is impossible to observe the beats, ex
cept of the cases of self-locking. [ 5] This is due to 
the fact that all mode beats have random phases, 
and their sum at the photodiode has the character 
of noise. Near the locking range, the beats of all 
modes are no longer independent, in view of the 

photo
multiplier 

3 

-2 

FIG. 2. Diagram of the experimental setup. The oscillo
scope is synchronized with voltage used to modulate the gen
erator frequency. 1 - KDP crystal, 2- gas discharge tube, 
3 -mirrors, 4 -photodiode, 5 -two-beam oscilloscope, 6 -am
plifier, 7- FM oscillator. 

FIG. 3. Oscillographic traces of mode locking. Upper beam 
shows the emission intensity. 

relationship between the phase equations. The case 
of the three-mode laser indicates that the system • 
is subject to synchronous oscillations of relative 
phases with a frequency close to that of the detun
ing. The laser emission intensity is somewhat in
creased within the locking range, which is in ac
cordance with the amplitude expressions (10) 
(upper trace in Fig. 3; intensity increases down
ward) 

Figure 4 shows the locking range as a function 
of the amplitude of modulated losses. In accord
ance with Eq. (21), it is linear when 13m is large. 

FIG. 4. Locking range, 8, 
as a function of the degree 
of modulation characterized 

by f3m· 

The minimum value of 13m at which locking can 
occur amounts to 10-4 for a~ 2 x 10 -a. The slope 
of the straight line in Fig. 4 corresponds to four 
or five laser modes with close amplitudes, as it 
follows from (22). The mode beats can be readily 
made to lock by adjustment of mirrors. In that 
case, the oscilloscope screen will show clear 
beats in the absence of modulation. Nevertheless, 
when laser synchronization was investigated by 
means of Q-switching, the self-locking effect was 
absent. 

In conclusion, I wish to express my deep grati
tude to S. A. Akhmanov for supervision of the 
work, and to I. P. Ponomareva for help in per
forming the experiment. 
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