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The problem of stimulated two-quantum emission (absorption) in the optical range is consid­
ered. It is assumed that the transition occurs between discrete levels of crystals with impuri­
ties or of free atoms. A critical analysis is given of the well-known result due to Kleinman. [ 11 
It is shown that the correct utilization of the "one intermediate level approximation" leads to 
an expression for the probability of a two-quantum transition which differs significantly from 
the expression obtained by Kleinman. 

IN connection with the development of laser phys­
ics at present considerable interest is being shown 
(both by experimentalists and theoreticians) in the 
problem of multi-quantum processes in optics. It 
is well known that a theoretical determination of 
the probabilities (cross sections) of such proc­
esses does not involve any difficulties of principle, 
but, as a rule, it is generally associated with a 
large amount of calculations (of the compound 
transition matrix element). The difficulties asso­
ciated with an exact calculation of the probabilities 
force us to seek various approximations for them. 
One such approximation for the probability W21 of 
a stimulated two-quantum transition applicable to 
impurity levels in crystals, i.e., of a transition 
from a quantum state 2 of a system (atom) into a 
state 1 accompanied by the simultaneous emission 
or absorption of two quanta was proposed by Klein­
man. [ 11 Utilizing the general results of the classi­
cal work of Goeppert-Mayer[ 21 Kleinman obtained 
the following expression for w21:1) 

W2t = /J2c2ro2 (2n)3FtFz (1) 
nt1ZzCOtC02.1.CO 

where Fa = cnaE~/87rfiwa is the flux of quanta in 
the a-th electromagnetic wave (a = 1, 2; Ea is 
the amplitude of the wave); w1 and w2 are the fre­
quencies of the waves (w1 + w2 = w21); n1 and n2 
are the indices of refraction of the medium at fre­
quencies w1 and w2; .1-w is the spectral width of 
the transition 2- 1; r0 = e2/mc2 is the classical 

1>In contrast to [•], we give the expression for W21 , and 
not for the cross section a, 2 = W2,JF1 2 for the emission 
(absorption) of a quantum 1i~1 2 when the flux of the quanta 
F 2 1 is given. Moreover, here~ nondegenerate case is as­
suined, i.e., c:u1 and c:u2 , generally speaking, do not coincide. 

electron radius. Formula (1) is obtained[ 1l in the 
"one intermediate state approximation," i.e., in 
deriving it, it was assumed that the greatest con­
tribution to the compound matrix element for the 
transition M21 is made by only one intermediate 
state of the system ko connected to the initial and 
the final states by the same oscillator strength f1. 
Moreover, it is assumed[ 11 that the state ko lies 
sufficiently far (in energy) from the initial and the 
final states so that 

COI ~ lro~t,tl "' lro~t,zl >rot, roz. 

The simplicity of formula (1) which contains a 
single characteristic of the intermediate state­
the oscillator strength f1, apparently, was the rea­
son for its wide use in scientific literature. It is 
sufficient to cite experimental papers on the ob­
servation of two-quantum absorption[ 3- 51 in which 
the discussion of the results obtained is carried 
out on the basis of formula (1). The same result 
is also utilized in the theoretical analysis of 
processes in the as yet unrealized two-quantum 
laser, [ 6• Tl and it is also quoted without any criti­
cal comments in the review article[ 81 and in the 
recently published monograph. [Sl We show below 
that formula (1) is not valid, i.e., it cannot serve 
as an approximation to the exact expression for 
W21 under any conditions (and, in particular, under 
those adopted in [ 11 ). 

The first suspicion that formula (1) is not valid 
is associated with the "infrared catastrophe" to 
which it leads. It is well known that for transitions 
between states of a discrete spectrum (which are 
under discussion at present) no "infrared catas­
trophe" should arise. 

The general expression for the probability of 
a stimulated two-quantum emission can be repre-
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sen ted on the basis of [ 2 1 in the form 

(2) 

where the compound matrix element M21 can be 
written in two mathematically equivalent forms:2' 

fie2 /11.(21) 
M21 =-~ ---:..::.....,----.,.--< 

m 11. (ffi11.1- ffi1) (ffiu- ffi2) 

= lie2 ~ ffi111.ffil1.2 /11.<21> (3) 
m 11. ffitffi2 ( ffil1.1- (1)1) ( ffi11.1- <.il2) 

In formulas (3) the summation is meant to be taken 
over all possible intermediate states k and we 
have introduced the notation 

/11.(21) = (m/lie2){J.1111.<2>J.111.2<1> ( ffi1<2 + ffi2) 

+ J.11k(1)J.lk2(2l((J)k1- ffi2)]. (4) 

Here J.LW' = (1-'1-'a)ij is the matrix element of the 
component of the dipole moment of the quantum 
system along the direction of the polarization ua 
of the field of the a-th wave. The quantity f~0 has 
the structure of the usual oscillator strength and 
can be called ''the oscillator strength for a two­
quantum transition.'' 

The quantities f~1 > in analogy with the usual 
oscillator strengths satisfy definite sum rules the 
principal one of which has the form 

~/1,_{21) = 0. (5) 

" 
The proof of this rule is similar to the proof of 
the Thomas-Reiche-Kuhn theorem and is based on 
the commutation properties of the operators J.L<a> 
= (J.LI-la) and J.L<a>: 

!l(2)!-L(l) - !l(l)!l(2) = 0; 

• • e2 
f.L!2lf.L<t> _ !l<t>f.L<2> = in_ (u1u2). (6) 

m 
The equivalence of the two forms (3) of the ex­

pression for M21 follows from rule (5): addition 
of the left hand side of (5) to the second part of 
formula (3) transforms it into the first part. From 
rule (5) there also follows the obvious conclusion: 
if in the system only one intermediate level k is 
present (to which single-quantum transitions from 
states 1 and 2 are allowed) two-quantum transi-

2 >we note that the first form is directly obtained in the 
case when the operator for the interaction with the field is 
chosen in the form V = - p(E, + E2 ), while the second form 
is obtained in the case when V = - ep(A, + A2 )/mc (Ea, A a 
are respectively the field strength and the vector potential). 
It is well known that in the dipole approximation, which is 
the only one considered by us at present, both forms of the 
operator V are equivalent. 

tions in it (Raman scattering included) are impos­
sible, i.e.' the probability w21 is strictly equal to 
zero. 3' We note that in the case of one intermedi­
ate level J.L~~ 1-l~> = J.L~~ J.L~ and, therefore, from 

the condition f~1 > = 0 we obtain Wk2 = - Wk1 
= - (w1 + w2)/2, i.e., the level k should lie halfway 
between levels 1 and 2. From here it follows, in 
particular, that two-quantum transitions hetween 
the levels m = ± 1 of a spin S = 1 in a magnetic 
field are impossible. 

Thus, the "one intermediate level approxima­
tion" with the condition WI » w1 2 adopted in [ 11 

' is, strictly speaking, internally contradictory. 
This is the explanation of the origin of the erro­
neous formula ( 1): it is formally obtained if in the 
second expression for M21 (cf., (3)) we take only 
the single term with k = ko under the condition 
lwkoti'"" lwko2l » w1o w2, and set fi'"" if~'l2 . We 
note that the first expression (3) in this case leads 
to quite a different result for M21 (cf., below). 
Later we shall show to what result the correct 
utilization of the ''single intermediate level ap­
proximation'' leads. 

For concreteness we assume that all the inter­
mediate levels k lie with respect to energy above 
the levels 1 and 2, with the first of these levels ko 
making a significant contribution to the sum (3). 
Such a level can stand for a whole band of states, 
as assumed in [ 11 • Introducing the notation: WI 

I 

= Wkoio WI = wko2 (we do not assume now that 
wko1 » w1o w2) and 

1 fi21) = - ~ /ko'1'(2i), 
gi 'I'. 

where gi is the statistical weight of the level ko, 
while the summation is taken over all the states 'Y 
of the level ko, we obtain for M21 on the basis of 
(3) two equivalent expressions: 

x{1 +~'(~)2 N 21' (1-ffit/ffii)(1-(J)2/(J)I)} 
" ffik1 gdP1> ( 1- ffit/(1)11.1) ( 1- ffi2/ffik1) 

= - fie2 gdpt> ffi/( 1 - ~)-1( 1 - ffi2 )-1 
m ffi1ffi2 ffii (J)I ffii 

x{ 1 +2;'ffi1 ffi"2 N 21> (1-ffit/(J)I)(1-(J)2/ffii)} 
" ffi/ ffil1.1 gdP1> (1- ffit/ffi11.1) (1- (J)Jffi,.t) . 

(7) 
The summations in formula (7) are assumed to be 
taken over all the intermediate states with the ex­
ception of ko· 

3 >Naturally, within the limits of the dipole approximation 
considered by us. 
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The "one intermediate level approximation" 
consists of neglecting the sum in the first formula 
(7) compared to unity. Such neglect can be justi­
fied if the frequencies Wk1, for which f~1 > are not 
small, are large compared to WI· Formally this 
approximation corresponds in formulas (7) to the 
transition to the limit wk1 -- 00 • In this case we 
obtain for M21 

fte2 gdi(21) 
M21= . 

m (wl-w1)(w1-w2) 
(8) 

The second formula (7) differs by the fact that 
the sum appearing in it makes a significant contri­
bution under all conditions and, therefore, cannot 
be neglected. The unjustified neglect of this sum 
leads to formula (1); but if in it we go to the limit 
wk1-- 00 and utilize rule (5) then we again obtain 
the correct formula (8). 

In conclusion we give the final expression for 
the probability of a stimulated two-quantum transi­
tion obtained in the "one intermediate level ap-
proximation: " 

W 2jj (21Jj2 2 2 (2n)3 WiW.Ji'iF2 (9) 21 = gi 1 ro c --- • 
ni~W(WI- W1) 2 (W1- W2) 2 

In this case the coefficient of amplification (ab­
sorption) a 1, 2 at the frequency w1, 2 is evaluated 

by means of the formula 

where ~n is the density of the difference in the 
population of levels 2 and 1. 

The author is grateful to P. P. Pashinin, A. M. 
Prokhorov and V. B. Fedorov for a useful discus­
sion of the problem under consideration. 
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