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The thermal conductivity coefficient is calculated for thin dielectric and ferrodielectric films 
and filaments at low temperatures, when the mean free path of the phonons and of the spin 
waves is much larger than the characteristic dimensions of the specimen. It is shown, that 
for thin films the main contribution to the thermal conductivity is made by gliding phonons 
and spin waves. In the case of thin filaments the gliding phonons and spin waves give only a 
correction. Different mechanisms of phonon and spin wave scattering are considered. 

J. We consider first the thermal conductivity of a 
dielectric film. We choose coordinates such that 
the z axis is normal to the boundaries of the film 
and the plane z = 0 lies on the lower boundary of 
the film. The deviation of the phonon distribution 
function x from the equilibrium Bose function n0 

should be obtained from the following kinetic equa
tion: 

ax 'X ano 
Vzaz +:;--=-(vVT) aT , (1) 

where v = ad ap is the phonon group velocity and 
T is the smallest of the relaxation times, due to 
N-processes, scattering by impurities, etc. 

The collision integral in (1) is expressed in 
terms of the relaxation time T, the introduction of 
which is always valid for thin films, since the non
equilibrium addition x to the distribution function 
has a sharp maximum for phonons that travel along 
the surface of the film. 

Solving Eq. (1) under boundary conditions x 
(z=d, Vz<O; z=O, Vz>O)=O, wecanreadily 
calculate the thermal conductivity coefficient 

2 2!' ano 
Xi~< = - (2n:.ti)3 ~ dee aT 

r sin 1'} dtt vl 
X J y-( ninh -[l-lcos 'l'l-(1- e-dll cost't)], 

0 'l'l-,<p) d (2) 

where l = VT is the phonon mean free path, vz 
= I v I cos J., n is the group-velocity unit vector, 
K( J., qJ ) is the Gaussian curvature of the phonon 
equal-energy surface, and J. and qJ are angles de
termining the position of n relative to the z axis. 

In the case d « l considered here, the main 
contribution to the integral (3) is made by the re
gion of angles for which d/l « cos J. « 1. Expand
ing the exponential in (3) in powers of the small 
parameter d/l cos J. and assuming that l, ni, and 
K( J., qJ) are independent of J., we obtain 

2d \ ano 2f' d~p z 
Xih = (2n:li) 3 J dee aT ~ v K(~p, n:/2) ninhlnd. (3) 

In the case of an isotropic dispersion law ( E(p) 
= vp for phonons and E(p) = ap2 for spin waves), 
the effective mean free path is leff - d In ( l/ d ) , in 
analogy with the result obtained by Fuchs for the 
effective mean free path of electrons in thin metal
lic filmsC 1J. 

Thus, the main contribution to the thermal con
ductivity of the film is made by phonons traveling 
along the surface of the film. At very low temper
atures, the smallest mean free path is the path zN 
connected with the normal collisions. Estimates 
yield for itC2J zN-.. a (Mv2/®n)(®n/T)2, where 
a is the lattice constant, M the mass of the atom, 
v the speed of sound, and en the Debye tempera
ture. Consequently, in the limit of very low tem
peratures, so long as zN » d, the thermal conduc
tivity of the film is 

x ~~(_!_)a vln{aMv2 (~)1 
a3 8n d8n T f. 

Further, when zN ~ d, the diffusion mechanism 
considered by Gurzhi [2], for which Zeff -.. d2 ;zN, 
comes into play. In samples that are not very pure, 
scattering by impurities may become important, 
corresponding to a mean free path li - c - 1a( ®n /T )4 

where c is the concentration of the impurity atoms. 
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For this case we have 

X - a~ ( ~ r V ln { d: ( ~D r} • 
In ferrodielectrics at low temperatures, when 

T « ®lJ /®c ( ®c is the Curie temperature), the 
thermal conductivity is determined by the spin 
waves. Normal collisions between spin waves are 
due to both relativistic and exchange interaction. 
The mean free paths for the corresponding pro
cesses have orders of magnitude [2, 3] 

( (3 )''• ·z •• <•>- a rc , 

where fJ. is the Bohr magneton, M0 the nominal 
magnetization, and {3 the anisotropy constant. 

In thin films of thickness d <a( ®c lfJ.Mo )2 

.... 10-3-10-4 em, the main contribution to the ther
mal conductivity, up to a temperature T1 deter
mined from the condition l~~)( T d ..... d, will be 
made by gliding spin waves. Taking this circum
stance into account, it is easy to estimate the 
thermal-conductivity coefficient: 

a ( Be ) 2 ~~o 
d ~-tMo exp-z;-, 

!:_(~~-)2 
d !J.Mo ' 

-i(~)"' 
If the thickness of the film is d .;;:. a( ®c I fJ.Mo )2, 

then gliding spin waves can be significant up to a 
temperature T 2 determined from the condition 
l~~(T2 ) ..... d. The coefficient of thermal conduc
tivity will be determined in this case by the first 
two expressions of the preceding formula. 

2. The kinetic equation for the thermal conduc
tivity of a dielectric filament is 

We choose a cylindrical coordinate system 
( r, J, z ) such that the z axis is directed along the 
filament axis. Solving Eq. (4) by the usual method 
(see, for example, [4]) with the boundary condition 
x (r = a, Vr :=::; 0) = 0, we obtain the following ex-

pression for the thermal conductivity of the fila
ment: 

1 dtP11- t2 a\ ( lt Zt) X \ r l J dya 1- - e-«flt - - , 
; K(t,cp) -a a a 

(5) 

where ljJ and ffJ are the angles that determine the 
position of the velocity vector relative to the coor
dinate system, a = 2 ( a2 - y2 ) 1/.!, t = sin 1/J, 
y = r sin (ffJ -J ), and 

1 1 f 
K (t ,cp) = K(arc sin t, cpf + K(n- arc sin t, cp) 

Expanding the exponential under the integral 
sign in powers of the small parameter a/lt and 
putting K(t,f(J)=K(O,ffJ) and l=l(O), weobtain 
after integrating with respect to y 

2 \ iJno 
x = (Znn)3 J dee iJ.T v 

(6) 

The last two terms in (6) are due to phonons 
traveling along the boundary. Unlike the preceding 
case, the gliding phonons do not make the main 
contribution to thermal conductivity, only a cor
rection. This is due to the fact that in the case of 
the filament an entire degree of freedom drops 
out and the number of phonons traveling along the 
surface is small compared with the number of 
phonons traveling in arbitrary fashion. In the limit 
as l- oo we obtain the well known result of Casi
mirC5J. 

The results obtained above are essentially con
nected with two assumptions: a) the scattering of 
phonons on the boundaries is diffuse, b) the mean 
free path of the phonons is much larger than the 
characteristic dimensions of the sample (l »d). 
Inasmuch as real samples are always rough, the 
assumption that the scattering is diffuse is always 
justified. The only possible exception is the re
gion of extremely low temperatures, when the 
phonon wavelength i\. is large compared with the 
characteristic dimensions of the roughness of the 
surface (i\. .... a®D/T and consequently i\. .... 10-6 em 
only when T/®D ..... 10-2 ). Under these conditions 
the reflection is specular. The second condition 
( l » d) is always attained for sufficiently thin 
films. 
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